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ABSTRACT 

Advancement in the big-data technologies in combination with machine-to-machine 

(M2M) interconnectivity and predictive analytics is creating new possibilities for real-time 

analysis of machine components for identifying and avoiding breakdowns in the early 

stages ahead of time. Designing such a condition-based maintenance system for high-speed 

fleet requires special attention to the design methodologies used in collecting the operating 

requirements from the users and translating them into big-data parallel architectures that are 

capable of exhibiting fault-tolerant behavior and load-balancing possibilities to sustain the 

real-time data processing demands. This paper discusses the M2M approach for the big-

data condition-based maintenance system and the requirement specification steps involved 

in building such a system, along with the cost-savings benefited from the system. 
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1. INTRODUCTION 

Approximately 30% of the life-cycle costs of a high-speed vehicle are spent 

on the maintenance of the vehicle, the largest spend besides energy [1]. The 

overall life-cycle cost distribution for a high-speed fleet is as shown below. 
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Figure 1. Life-cycle costs of high-speed fleet 

Pain-points that customers usually complain about such life-cycle costs are: 

 Maintenance is the highest cost factor in the operations of high 

speed vehicles, besides energy and depreciation. 

 Over a period of time, maintenance costs exceed the depreciation. 

 Approximately 40% of the maintenance goes for the material / spare 

parts costs, while the remaining 60% amounts to personnel costs. 

 For an operational fleet, the depreciation and energy costs stay 

constant during the fleet’s life-cycle, leaving the maintenance cost as 

the only major cost position available for optimization [1][2]. 

Thus, reducing the maintenance costs highly improves the profit margins for 

operators. The different maintenance strategies followed by manufacturers 

and operators in this regard are as follows: 

 Corrective Maintenance: This is a Run-till-Failure methodology without 

any specific plan of maintenance in place. Vehicle is considered to be 

functional and fit until it breaks-down. 

o Cons: 

 Unexpected and uncontrolled production downtimes. 

 Risk of secondary failures and collateral damage. 

 Uncontrolled costs of spare parts and overtime labor. 

o Pros: 

 Zero overhead of planning or condition monitoring costs. 

 Machines are not over-maintained. 

 Preventive Maintenance: A periodic maintenance strategy popular with 

the current manufacturers and vehicle service operators. Based on the 

asset design parameters, a potential breakdown period is pre-calculated 

and a schedule is pre-determined for preventive maintenance. Vehicle is 

subjected to regular maintenance periodically on those intervals, 
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irrespective of the usage pattern or the condition of the asset, assuming 

that the vehicle is going to break-down otherwise. 

o Cons: 

 A time-driven procedure. Assets are subjected to repair 

even in the absence of any faults. 

 Unscheduled breakdowns can still happen 

o Pros: 

 Maintenance cost estimates are known beforehand. 

 Inventory control and spare-parts planning is possible. 

 Fewer catastrophic failures and lesser collateral damage. 

 Predictive Maintenance (PdM): This is an emerging strategy that applies 

predictive analytics to the real-time data gathered from the vehicles with 

the aim of detecting any deviations in the functional and behavioral 

parameters that can lead to vehicle breakdowns. Such anomaly detection 

procedures help identify the breakdowns as soon as their potential cause 

arises in real-time long before the break-down happens. 

o Cons: 

 Additional investment needed for the monitoring system 

 Skilled labor specially trained to effectively use the 

system may be required. 

o Pros: 

 Parts are ordered on the need basis and maintenance is 

performed during convenient schedules. 

 Unexpected breakdowns are eliminated. 

 Reduced breakdowns result in maximum asset utilization. 

Predictive maintenance, is also often commonly referred to as the 

Condition-based Maintenance (CBM), as it avoids the unnecessary 

inspection and repair costs by recommending a maintenance schedule that is 

based on the prevailing conditions of the machine in the real-world 

operating conditions [3].  
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Figure 2. Predictive Maintenance reduces costs by detecting failures in early stages 

To understand this, let us consider a typical periodic maintenance scenario 

for a vehicle. In a normal periodic maintenance mode, the vehicle owners 

are expected to change the engine-oil frequently at regular periods, such as 

after every 4 or 5 thousand Kilometers traveled. In such cases, the real 

condition of the vehicle or the performance capabilities of the engine-oil are 

not taken into consideration. Maintenance is carried out purely because it is 

as per the schedule. Had the owner had a way to realize the underlying 

vehicle condition (the remaining useful life, RUL), or the engine oil 

lubrication contamination levels at that instance, he or she could potentially 

either postpone the oil change, to a later point where the change is really 

needed, or even pre-pone it as per the prevailing conditions. CBM provides 

such capability to gain insight into the actual operating conditions of the 

vehicle and use them to accurately predict the maintenance requirements. 

Our earlier paper [3] presented an in-depth review on the inner workings of 

CBM systems and how in conjunction with sensor arrays and telematics 

they facilitate predictive maintenance. 

Increased component availability, better worker safety and improved asset 

usage etc. are some of the compelling reasons why more and more operators 

and manufacturers are actively embracing CBM based fleet management 

solutions. 

 Benefits for workers: 

– Work-life balance with predictable schedules 

– Turn-key solutions with zero paper work 

– Increased on-road safety 

– Navigation helpers and landmark guides 

 Benefits for Management: 

– Reduced maintenance costs with Predictive Maintenance 
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– Increased asset usage with zero unplanned downtime 

– Operational costs are reduced and idle times are eliminated 

with smart scheduling 

– Improved customer loyalty with always on-time deliveries 

– Theft and misuse prevention with real-time asset tracking 

In the following sections, we present the methodology involved in designing 

such a condition-based maintenance management system using the 

machine-to-machine (M2M) approach, and showcase the architectural 

outline for one of our recently built system, along with the open-source 

tools and frameworks used in building the system and the cost-savings 

reported by the customers using it. 

2. M2M APPROACH TO THE CBM 

A Condition-based Maintenance Management (CBMM) solution designed 

around M2M operates on three major technology directives: 

1. Remote Sensor Monitoring & Data Capturing. 

2. Real-time Stream Processing of Sensor Data. 

3. Predictive Analytics. 

Sensors are attached to the remote assets to collect various data about the 

assets’ operating behavior and send it in real-time to a centralized 

monitoring station. The data arrives as continuous streams at the monitoring 

station, and is subjected to analysis using anomaly detection mathematical 

models to identify patterns of deviations in the expected functionality. Once 

any such anomaly is identified by the algorithms, owners are immediately 

notified indicating the potential failure and suggesting the appropriate 

corrective action. Handling such anomalies in timely manner prevents 

further functional degradation of the vehicle, thus avoiding potential costly 

breakdowns down the line. Often times the centralized monitoring station 

resides on the same network as that of the sensors (such as control area 

network) or it could be in a distant remote location connected through 

satellite networks or WAN. 
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Figure 3. M2M facilitates real-time failure detection and prediction 

During their operations, devices such as On-Train Monitoring Recorder 

(OTMR) for trains and Flight Data Recorder for flights record events in 

real-time from their connected vehicles, and either store them on-board for 

later processing when they reach their destination, or relay the events to the 

centralized processing system in real-time enroute using the machine-to-

machine (M2M) telematics procedures and get processed on the fly to detect 

any current anomalies and predict future failures [4]. Nature of some of the 

data collected and analyzed for this purpose could be as follows: 

 On-board Diagnostics (OBD) data: Vehicle speed, RPM, fuel etc. 

 Driving Patterns: Acceleration patterns, braking patterns etc. 

 GPS data: Locations, routing, length of stay of vehicle etc. 

 OTMR data: Door close status, Air suspension pressure, Brake 

dragging, HVAC failure etc. 

In a nutshell, the concept of CBM is centered around: detect failures in their 

early stages so that you can prevent them from happening in the later 

stages. At the minimal level one can expect the below listed functionality 

from a well-designed CBMM system [7][8][9]: 

 Find the Remaining Useful Life of assets 

 Estimate the Failure Rate for assets 

 Design a Predictive Maintenance Schedule 

 Maintain right levels of Inventory for spare parts 

 Schedule right skilled and sized workforce 

 Optimize Inspection routines 

 Decide right Warranty period at design time 
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 Evaluate What If alternate scenarios 

 Compare different designs for reliability evaluation 

A major challenge in implementing a CBMM system for high-speed fleet, 

however, is: processing the enormous volumes of data streamed-in from 

sensors attached to the high-speed vehicle in real-time. This requires: 

 Parallel architectures capable of handling large volumes of data, 

 Low payload data-structures that optimize sensor data bandwidth, 

 Fault-tolerance capabilities that can deal with packet drops and 

fragile networks for real-time data streaming, 

 Adaptable ontologies capable of supporting varied data types and 

protocols in parallel, 

 Proof based security to ensure data privacy and anonymity. 

Latest advancements in the Big-data open-source family of technologies 

offer viable solutions for the above requirements [5][6]. However, before 

one can design such big-data solution for the CBMM, the design process 

has to go through the requirement gathering and specification mapping 

stages to be able to accurately capture the customer requirements and realize 

them in software. The following section elaborates on this. 

3. THE CBMM SYSTEM DESIGN PROCESS 

The design process starts with requirement gathering, which can be 

classified as addressing the three solution enabler stages as indicated below: 

 Stage 1: Sensor data capturing stage 

 Stage 2: Real-time stream processing stage 

 Stage 3: Predictive failure-detection stage 

The requirement gathering for stage 1 encompasses collecting information 

from the customer on the requirements of data capturing and real-time 

monitoring. Some of the questions that help gathering information from the 

customers at this stage are: 

 What data should be collected and which sensors should be used? 

E.g. thermal imagery, audio signals, etc. 

 What are the components and parts that need monitoring? E.g. 

Engine Oil, Train brakes, Engine Crank Time, etc. 

 How frequently the data should be collected? Hourly, daily etc. 

 How to identify and handle faulty sensors? 
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In the requirement gathering for stage 2, the focus is on real-time processing 

of the collected data and some of the questions that customers need to 

answer in this stage are: 

 What is the expected data processing latency? 

 What should happen to the collected data post processing? 

 How to address missing data points and inaccuracies? For example, 

a faulty sensor sending incorrect data. 

For the final stage, the emphasis is on the analytical-subsystem. Customer 

requirements for this stage are collected through questions such as: 

 Define the acceptable behavior and define the anomaly. 

 What are the response actions for each anomaly class? 

 What is the maximum acceptable time lag after the detection of the 

anomaly, before the corresponding corrective action takes place? 

 How to deal with multiple anomalies detected at the same time? 

Once complete, the gathered requirements are then formulated into a system 

specification that gives a formal outline of what is the expected from the 

CBMM.  E.g. for the stage 1 requirements, the specifications outline what 

should be the operational level notifications possible in case of network 

unreachability for the sensors during the data capturing stage. 

Similarly, stage 2 requirement specifications formalize the data-processing 

functionality. The specifications for this stage result in a matrix like 

structure as shown in the below table, where each component that is being 

monitored is listed alongside the possible events it can generate and the 

criticality of each event, along with what action, if any, should be carried 

out by the ground/operating crew monitoring that event.  

Component Event Source Event 

Criticality 

Control 

Center 

Alert 

Event reaction 

Door Closed after 

the train 

started moving 

Door 

side 

camera 

Low - - 

Break Emergency 

break tripped 

OTMR Critical SMS/Email/ 

Escalation 

Matrix 

Check power 

supply, air 

pressure 
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For example, in the above, one can see the component door being monitored 

for the close event, with a low criticality being attributed to it, while an 

emergency brake event is being monitored with high criticality attribution. 

Also, in case of emergency brake event, the event reactions list possible 

course of action, such as checking the power supply and air-brake pressure, 

which act as resolution guidelines for the crew and/or automated resolution 

solver system. 

The specifications for the final stage revolve around failure prediction. 

Formal guidelines are established as to how a failure should be predicted 

and which data source and event should be used in the process. For 

example, the below table lists trend analysis criteria and pattern matching 

criteria as the stipulated methods for the door and break failure respectively.  

Component Event Failure Indication 

Door Closed after the train 

started moving 

1. Delay increasing, or 2. Happening for the last 

n observations (n > threshold) 

Break Abnormal break 

pressure patterns 

Pattern matches with historical failure data 

Based on these specifications, the CBMM system collects the data at the 

specified intervals from the sensors and utilizes the below methodologies to 

assert the asset’s condition: 

 Critical range and limits: Various statistical tests are performed to 

assert if the captured sensor data falls inside a critical failure range 

decided by the expert and requirement specifications [10]. 

 Trend Analysis: Verify if the vehicle condition is in a deteriorating 

mode with an immediate downwards trend towards breakdown [11]. 

 Pattern recognition: Establishes the causal relations between the 

events and the vehicle breakdowns [12]. 

 Statistical process analysis: Historical failure record data, collected 

through case-study histories, warranty claims and data archives, is 

processed with statistical procedures to find a suitable analytical 

model for the failure curves. As new data is gathered from the 

sensors, it is compared against those statistical models to predict the 

future breakdowns [13]. 

Trend analysis and critical range limit violations can be detected with real-

time monitoring and stream processing of data. However, the pattern 

recognition and statistical process analysis requires historical data to be 

analyzed and compared against the real-time live data for insights. Usually 
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such historical data is gathered through warranty-claims and maintenance 

records.  

Advancements in the Big-data technologies and predictive analytics are 

enabling the stream processing of high volume live-data in real-time and 

matching it with the voluminous historical data offline. A reference 

architecture that was created for one of our large high-speed fleet 

management clients using the afore-mentioned design methodology on Big-

data using M2M is as shown below: 

 

Figure 4. Reference architecture for condition-based maintenance mgmt. system 

The layered architecture enables one to easily customize or upgrade only 

particular part of the system without completely replacing the whole system. 

The XML schemas used as the base to store and operate on the operating 

design specifications allow cross-platform compatibility and open-systems 

interoperability. Sensors communicate with the data acquisition and 

manipulation layers using the M2M framework, while the condition-

detection, prognosis and health-assessment layers were implemented using 

Big-data parallelism. The maintenance support layers take care of the 

required notifications for the administrators and operating crew using the 

report dashboards and HMI visualizations along with security restrictions. 

To achieve this level of sophistication, we integrated and customized 

multiple open-source frameworks to our requirements, some of which are 

listed below. 
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 Remote sensor monitoring & data capturing: OpenXc 

 Real-time stream processing: Storm, Kestrel, ZMQ, MQTT 

 Predictive analytics: R 

 Real-time anomaly detection: Esper, CEP 

 Distributed fault-tolerant storage: Hadoop, HBase 

 Failure report dashboards: HTML 5 

 Control center visualization: OpenGl, Vtk, Qt, HMI 

The value-add in integrating and customizing these frameworks lies in 

achieving the required level of functionality with commodity hardware, 

enabling it to handle large volumes of data with adaptable ontologies all the 

while reducing the sensor data bandwidth. In their native form, individually, 

these open-source frameworks will not be able to achieve the afore-

mentioned objectives in a manner suitable for enterprise customers [14]. 

The integration and interconnection of different technologies used for 

implementing this solution is as shown below: 

 

Figure 5. Technology stack integration for our condition-based maintenance 

management solution 

After the initiation of a fully functional CBMM system, our customer 

reports have indicated the following year-wise average savings resulted 

across their business units: 

 Reduction in maintenance costs: 25% to 30% 

 Spare parts inventories reduced: 20% to 30% 

 Reduction in equipment downtime: 35% to 45% 

 Elimination of breakdowns: 70% to 75% 

 Overtime expenses reduced: 20% to 50% 
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 Asset life increased: 20% to 40% 

 Increase in production: 20% to 25% 

While the predictive technology reduced the unexpected brake-downs, the 

collateral benefits, such as work-life balance (with no unexpected brake-

down calls), reduction of over-time expenses and improved asset 

availability contributed to the production increase rates. 

4. CONCLUSIONS 

Advancement in the big-data technologies in combination with M2M and 

predictive analytics is creating new possibilities for real-time analysis of 

machine components for detecting failures in the early stages and avoiding 

them ahead of time.  Increased component availability, improved worker 

and environment safety, better asset usage etc. are some of the reasons that 

are attracting more operators and manufacturers to embrace condition-based 

maintenance strategy in their operations. Designing such a system for high-

speed fleet, however, requires special attention to the design methodologies 

used for collecting the operating requirements from the users and translating 

them into big-data parallel architectures that are capable of exhibiting fault-

tolerant behavior and load-balancing possibilities to sustain the real-time 

data processing demands. This paper presented reference architecture for 

one of our big-data M2M systems we designed as a large fleet-management 

solution for a customer and showcased the technology framework 

interconnects used in the said system. With more and more customers 

becoming interested in these solutions, one can expect more solutions built 

on these architectures using the listed frameworks and suggested design 

methodologies in the future. 
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