
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 1

Design of ATL Rules for

Transforming UML 2 Sequence

Diagrams into Petri Nets

Elkamel Merah
University of Khenchela, MISC Laboratory, University of Constantine, Algeria

Nabil Messaoudi
University of Khenchela, MISC Laboratory University, of Constantine, Algeria

Dalal Bardou
University of Khenchela, Algeria

Allaoua Chaoui
MISC Laboratory, University of Constantine, Algeria

ABSTRACT
UML 2 sequence diagrams are a well-known graphical language and are widely

used to specify the dynamic behaviors of transaction-oriented systems. However,

sequence diagrams are expressed in a semi-formal modeling language and need a well-

defined formal semantic base for their notations. This formalization enables analysis and

verification tasks. Many efforts have been made to transform sequence diagrams into

formal representations including Petri Nets. Petri Nets are a mathematical tool

allowing formal specification of the system dynamics and they are commonly used in

Model Checking. In this paper, we present a transformation approach that consists of

a source metamodel for UML 2 sequence diagrams, a target metamodel for Petri Nets and

transformation rules. This approach has been implemented using Atlas

Transformation Language (ATL). A Cellular Phone System is considered, as a case

study.

Keywords
UML 2, Sequence diagrams, Petri Nets, Model checking, Model transformation,

Metamodeling, Transformation rules, ATL.

1. INTRODUCTION

The Unified Modeling Language (UML) [2] is a general-purpose graphical

object-oriented modeling language that is designed to visualize, specify,

construct and document software systems in both structural and

behavioral aspects. UML is intended to be a common way of capturing

and expressing relationships and behaviors in a notation t h a t i s easy to

learn and efficient to write [17].

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 2

In 1997, UML [2] was accepted by the Object Management Group

(OMG) [13][17]. Since then, UML has gone several revisions and

refinements leading up to the current UML, revision 2 [13][17].

This revision represents the cleanest, most compact version of UML.

Today, UML is widely accepted by the software engineering community

as a standard in industry and research.

The UML 2 provides several categories of diagrams to specify

different aspects of the system, like structural or behavioral aspect.

For behavioral-intensive s y s t e m s , the dynamic behavior is the most

critical aspect to take into account.

Sequence Diagrams (SDs) - which are considered in this paper - be- long

to the behavioral d i a g r a m s l i k e communication d i a g r a m s .

They are collectively known as interaction diagrams. The communication

diagrams are used to understand and document the interactions between

the objects and also in order to show how the classes are working

together to achieve a goal [11]. Sequence diagrams emphasize the type

and order of messages passed between elements during execution [17].

We selected SDs from UML 2 interactions diagrams since they are the

most common type of interaction diagrams and are very intuitive to new

users of UML [17].

UML models of the interaction category are generally transformed for

verification and validation purposes. This is because dynamic models,

such as SDs, lack sufficient formal semantics [9]. Moreover, UML was

created as a semi-formal modeling language it does not include a formal

semantics [4]. This limitation m a k e s rigorous analysis difficult, which

leads to an ambiguous model and problems with modeling the process

concurrency, synchronization, and mutual exclusion [21]. On the other

hand, one of the most important problems of designing phase in software

engineering is to verify all designed things before going to the

implementation phase because starting the implementation phase before

verifying design phase is a big risk in big projects [11].

Thus, production of the new technologies for verification and

validation of UML models seem very crucial and converting UML to

some mathematical models, in order to formalize and validate them

can be a very important task. Many researchers have been

performed in order to only transform the UML models into a formal

model [11]. In our approach, the formal model is Petri Nets (PNs)

[12][18]. Petri Nets can model, among others like automata, the

behavior of systems having concurrency. Since PNs are a formal model

and they have a mathematical representation with a well-defined

syntax a n d semantics, they do not carry any ambiguity and thus, are

able to be validated, verified and simulated.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 3

The suggested approach is mainly based on the technique of metamodel

transformations [5]. Such approach consists in defining the source

metamodel of sequence diagrams, defining the target metamodel of Petri

Nets, and defining the transformation rules. Our transformation

contributes t o the on-going attempt to develop a formal semantics of

UML [13] based on model transformations [5]. On the basis of this

transformation it is possible to accomplish verification of the dynamic

model of the real system. All these reasons motivate the work to map or

to transform UML 2 sequence diagrams to Petri Nets. To achieve this

goal, this paper proposes a set of rules for this transformation.

The rest of this paper is organized as follows. In section 2, we discuss

related work. In section 3, we briefly review the features of UML 2

interactions and sequence diagrams and we briefly introduce Petri Nets.

Section 3 also describes both source and target metamodels suited to the

transformation. We then show in section 4 how we translate a sequence

diagram into behaviorally equivalent Petri Net (PN). In section 5 is

presented the application of the proposed transformation rules with a

Cellular Phone System. Section 6 presents the implementation of the

system design transformation process. We finally conclude our work in

section 7 with some remarks and future work.

2. RELATED WORKS

Many research works have been done on model transformations and

especially to transform sequence diagrams into Petri Nets in order to

perform formal verification. UML sequence diagrams have been very

considered and many works propose a rule-based approach to

automatically trans- late sequence diagrams into Petri Nets.

Kessentini [9] describes an automated SDs to colored Petri Nets

transformation method, which finds the combination of transformation

fragments that best covers the SD model, using heuristic search in a base

of examples. To achieve his goal, he combines two algorithms for global

and local search, namely Particle Swarm Optimization (PSO) and

Simulated Annealing (SA). Ait-Oubelli [15] uses graph transformation to

transform SDs to Promela code. Ribeiro [19] proposed a set of rules that

allow software engineers to transform UML 2.0 sequence diagrams into a

Colored Petri Net. He also used graph transformation to specify

transformation rules. Chaoui [3] proposed an approach to translate SDs

models to their equivalent ECATNets models. The resulting models can

be subjected to various Petri Net analysis techniques. His approach TNets

models are graphs.

In another work, we have proposed a similar approach [10] but deals with

UML 2.0 communication diagrams.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 4

This paper deals with transforming UML 2 sequence diagrams into Petri

Nets models for analysis and verification purposes by using some

transformation rules expressed in the ATL language. Our work is a step

forward in a project that is exploring means to define a semantics for

UML 2 communication diagrams.

3. THE BASIC METAMODELS

3.1 UML 2 Diagrams For Interaction

UML 2 divides diagrams into two categories: structural modeling

diagrams and behavioral modeling diagrams:

• Structural diagrams illustrate the static features of a model. Static

features include classes, objects, interfaces and physical components. In

addition, they are used to model the relationships and dependencies

between elements. Structural diagrams include Class diagram, Object

diagram, and some others.

• Behavioral diagrams describe how the modeled resources in the

structural diagrams interact and how they execute each other

capabilities. The behavioral diagram puts the resources in motion, in

contrast to the structural view, which provides a static definit ion of the

resources [16]. Behavioral diagrams include the Interaction diagrams,

Use Case diagram, Activity diagram, State Machine diagram and others.

Interaction diagrams [17] are defined by UML 2 to emphasize the

communication between objects, not the data manipulation associated

with that communication. Interaction diagrams focus on specific

messages between objects and how these messages come together to

realize functionality [17]. An interaction can be displayed in several

different kinds of diagrams: Sequence Diagrams, Communication

Diagrams, Interaction Overview Diagrams, and Timing Diagrams.

– Sequence diagrams are one of the kinds of interaction diagrams

that emphasize the type and order of messages passed between elements

during execution [17].

– Communication diagrams are one of the kinds of interaction

diagrams that focuses on the elements involved in a particular behavior

and what messages they pass back and forth [17]. Communication

diagrams emphasize the objects involved more than the order and type of

the messages exchanged [17].

– Interaction overview diagrams are simplified versions of activity

diagrams [17]. Instead of emphasizing the activity at each step,

interaction overview diagrams emphasize which element or elements are

involved in performing that activity [17].

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 5

– Timing diagrams are designed to specify the time constraints

on messages sent and received in the course of an interaction. They are

often used to model real-time systems such as satellite communication or

hardware handshaking [17].

Both sequence and communication diagrams concentrate on the

presentation of dynamic aspects of a software system, each from a

different perspective. Sequence diagrams stress time ordering while

communication diagrams focus on organization. Despite their different

emphases, they share a common set of features. Booch, Rumbaugh,

and Jacobson [2] claim that they are semantically equivalent since

they are both derived from the same sub-model of the UML

metamodel, which gives a systematic description of the syntax and

semantics of the UML. In this work, we concentrate on sequence

diagrams.

3.1.1 Sequence Diagrams

Sequence Diagrams (SDs) and Communication Diagrams (CDs) are two

views of the same scenario where SD gives the temporal view of a scenario

and CD gives the structural one. SDs record the same information as

CDs and, hence, scenarios. They just provide a different view one that

focuses on the structural view of the object interactions, rather than the

temporal view. The communication is implicit in a SD, rather than

explicitly represented as in a CD. Some tools even generate SDs from

CDs (or vice versa).

3.1.2 Sequence Diagrams Metamodel

Sequence diagram expresses interactions between objects by exchanging

messages. We provide UML 2 sequence diagram a metamodel, which

graphically displays the abstract syntax in terms of class diagram. The

metamodel complies with the interaction metamodel provided by OMG

[13], whereas showing only the essential syntax constructs of a sequence

diagram, to facilitate the mapping to the Petri Nets. In the metamodel,

the syntax elements are represented as classes, shown as boxes, and

relations elements are represented as associations, shown as lines among

classes in terms of class diagram. A hollow diamond on an association

represents aggregation relationship (has-a), while a filled diamond

represents a composition relationship (part-of). A triangle on an

association represents a generalization between a superclass and its

subclass. The numbers attached to an association are called

multiplicities, which describe how many objects may exist in the

association. A star denotes zero or more. If no multiplicity is present, a

one-to-one relationship is implied [20].

In this work, we proposed a sequence diagram metamodel, it is inspired

from the OMG [13] metamodel. It describes all the concepts and the

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 6

relations existed between them. Figure 1 shows our simplified

metamodel for UML 2 sequence diagrams. The important concepts in

an interaction are life lines, messages, and combined fragments.

• Description of the metamodel:

- The class Interaction: It is the root, w h i c h represents an

interaction. Each interaction has a name (attribute name of type

String). An interaction consists of a set of life lines and a set of

messages.

- The class LifeLine: LifeLine represents the operations executed

by an object. Each life line has a set of incoming and outgoing

messages. It can be covered by interaction operands.

Figure 1. A simplified metamodel for UML 2 sequence diagrams

- The class Message: A message defines a particular

communication between two objects. Each message has a name,

the attribute IsPart of type Boolean is used for the transformation

of the operator Alt. Message consists of Send and Receive action,

which are placed on two different Occurrences Start and End.

- The class OccurrenceSpecification: It describes the scheduling

of messages, through order attribute of type Int. The attribute

IsTheLast of type Boolean is used to differentiate between the last

message and the others.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 7

- The class CombinedFragment: It consists of a set of operands of

type IntercationOperand. Each CombinedFragment has a kind; it

takes a value among the enumeration Kind values.

- The class InteractionOperand: It represents an operand of an

operator, it has a name and it can have a constraint of type

InteractionConstraint. An interaction operand covers by a set of

life lines.

- The class InteractionConstraint: It has an attribute name of

type String that represents the value of the constraint.

3.2 Petri Nets Metamodel

Petri Nets are a graphical and mathematical representation of discrete

distributed systems. They are also known as Place/Transition nets or

P/T nets. Petri Nets consist of places, transitions and directed arcs to

connect them. There are two sorts of arcs connecting place to transition

or transition to place.

A Petri Net is a 4-tuple PN = (P, T, Pre, Post) where:

1. P is a finite set of places,

2. T is a finite set of transitions,

3. Pre: P*T —> N is the application of previous places,

4. Post: P*T —> N is the application of following places.

 Figure 2 shows a metamodel for Petri Nets.

Figure 2. Petri Nets metamodel

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 8

• Description of the metamodel:

- The class PetriNet: It’s the root which represents a Petri Net,

it has one attribute ”name” of type String, it takes the name of

the Petri Net.

- The class Place has two attributes:

 Name: of type String, i t represents t h e content of the

place.

 Id: of type Int, it used for scheduling the set of the places.

Each place has a set of outgoing PlaceToTransArc, and a set of

incoming TransToPlaceArc.

- The class Transition: It has one attribute”name” of type

String. It represents t h e action executed by the transition

(Send or Receive action). Each transition has a set of outgoing

TransToPlaceArc, and a set of incoming PlaceToTransArc.

- Arcs are ”PlaceToTransArc” or ”TransToPlaceArc”. The

class Arc is an abstract class, it’s only used for inheritance. Both

of PlaceToTransArc and TransToPlaceArc inherit frome class

Arc.

- Each PlaceToTransArc has as a source a place, and as a target a

transition.

- Each TransToPlaceArc has as a source a transition, and as a

target a place.

4. TRANSFORMATION APPROACH

4.1 The Transformation Process
To make easier the rules’ specification of the transformation, our efforts

address the transformation at the metamodel level of UML 2. This also

allows the mapping between the concepts of both metamodels source and

target. The metamodeling based transformation approach for

transforming UML 2 sequence diagrams into Petri Nets is shown in

Figure 3. Sequence diagrams are assumed to be syntactically and static

semantically correct. The transformation process is achieved by the

application o f rules. A transformation rule consists in transforming a

concept outlined in the source metamodel to a corresponding concept in

the target meta- model.

4.2 Transformation Rules

In the following, we define the rules for transforming sequence diagrams

into Petri Nets. The transformation rules describe the interactions that

exist between classes of the “sequence diagrams” metamodel and “ Petri

Nets” metamodel. These rules consist essentially of:

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 9

Figure 3. Overview of the Sequence Diagrams to Petri Nets ATL trans-

formation

• Basic Interaction Transformation Rules

- Rule1: The name of Petri Net is the name of the Interaction.

- Rule2: Each Message is transformed into two sub-Petri nets

(Figure 4). Each sub-Petri net describes the behavior of an object

(the status of the object before and after Send (Receive action).

These sub-Petri ne t s are connected with a place labeled with the

message name.

• Alt Transformation Rules

Alt is transformed a s shown in Figure 5.

- Rule1: The role of this rule is the verification of the kind and the

number of operands. From the class CombinedFragment, places

and transitions correspond to Alt transformation are initialized.

- Rule2: It’s the same rule (Rule2) of Basic Interaction

Transformation, the only difference that we handle all cases to

connect operand begin transition with the places correspond to

first send and receive messages, and places correspond to last send

and receive message with operand end transition (for example,

Altcase1 below).

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 10

Figure 4. A message transformation

Figure 5. Alt transformation

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 11

• Parallel Transformation Rules

Parallel i s transformed a s shown in Figure 6.

Figure 6. Parallel transformation

- Rule1: The role of this rule is the verification of the kind, the

number of operands d o es not matter. From the class

CombinedFragment, places and transitions correspond to Parallel

transformation are initialized.

- Rule2: It’s the same rule (Rule2) of Basic Interaction

Transformation, the only difference that we handle all cases to

connect Parallel begin transition with the places correspond to

first send and receive messages , and places correspond to last

send and receive message with Parallel end transition.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 8, No. 1. DECEMBER 2013 12

Basic Interaction Transformation Rules

rule Interaction2PetriNet{

from

s: SequenceDiagram!Interaction —- It produces Petri Net’s name—-

to

p: PetriNet!PetriNet (name <- s.name)

}

rule Interaction{ from s:SequenceDiagram!Message to

l:PetriNet!Place(—- It produces the initial send place—-

name<-’Send’+ s.name +’.Before =’+ s.SourceLifeLineName +’.Begin’, id <-

s.MessageSendOrder),

n:PetriNet!Transition(—-It produces the send transition—-

name<-’Send ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’),

r: PetriNet!Place (——–It produces the final send place——- name<-

s.SourceLifeLineName +’:Send’+ s.name +’.After’, id <-

s.MessageSendOrder+1),

m:PetriNet!Place(——-It produces the middle place——–

name<- s.name),

t:PetriNet!Place (——-It produces the initial receive place—–

name<-’Receive’+ s.name +’.Before =’+ s.TargetLifeLineName +’.Begin’,

id<-s.MessageReceiveOrder),

p:PetriNet!Transition(——-It produces the receive transition—–

name<-’Receive ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’),

d:PetriNet!Place (——-It produces the final receive place—— name<-

s.TargetLifeLineName+’:Receive’+ s.name+’.After ’, id<-

s.MessageReceiveOrder+1),

isp-st :PetriNet!PlaceToTransArc(——-It produces for each arc their source

and target nodes, the same thing for the rest below——

source <-l,

target <-n),

...

st-mp:PetriNet!TransToPlaceArc(source<-n,target<-m)

}

13

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

Alt Transformation Rules

rule Alt{

from

c:SequenceDiagram!CombinedFragment (c.IsAlt() and c.Has2Operand()) —

–It checks if the combined fragment is named Alt and if it has two operands———

to

pl:PetriNet!Place (——It produces the first operand begin place——

name<-’Alt part one:Begin’),

sl:PetriNet!Place (——-It produces the second operand begin place——

name<-’Alt part two:Begin’),

rl:PetriNet!Place(——It produces the first operand end place——

name<-’Alt part one:End’),

tl:PetriNet!Place (-It produces the second operand begin place-

name<-’Alt part two:end’),

nl:PetriNet!Transition (-It produces the first operand transition contains the

operand’s name-

name<- ’ConditionOne :’ + c.getFirstOperandName),

bl:PetriNet!Transition (-It produces the second operand transition contains the

operand’s name-

name<- ’ConditionTwo :’+ c.getSecondOperandName),

al:PetriNet!Transition(-It produces the first operand transition end contains the

operand’s end-

name<-’ConditionOne:’+ c.getFirstOperandName +’.End ’),

dl:PetriNet!Transition(-It produces the second operand transition end con-

tains the operand’s end- name<-’ConditionTwo:’+ c.getSecondOperandName

+’.End ’),
————————The arcs’ source and target nodes as Basic Interaction

Transformation—–

}

14

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

Alt Transformation Rules

rule AltCase1{

from

s:SequenceDiagram!Message(s.FirstSendMessage() and

s.FirstReceiveMessage() and s.IsPartOne() and s.IsTheLastSend() and

s.IsTheLastReceive()) —–It checks which part is the message and its extremities to

attach it with the right arcs ———

to

l:PetriNet!Place(name<-’Send’+ s.name +’.Before =’+

s.SourceLifeLineName +’.Begin’, id ¡-s.MessageSendOrder),

n:PetriNet!Transition(

name¡-’Send ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’),

r:PetriNet!Place (name¡-’Send’+ s.name +’.After =’+ s.SourceLifeLineName

+’.End’,

id ¡- s.MessageSendOrder+1), m:PetriNet!Place(name¡-s.name),

t:PetriNet!Place (

name¡-’Receive’+ s.name +’.Before =’+ s.TargetLifeLineName +’.Begin’, id¡-

s.MessageReceiveOrder),

p:PetriNet!Transition(

name¡-’Receive ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’), d:PetriNet!Place (

name¡-’Receive’+ s.name +’.After =’+ s.SourceLifeLineName +’.End’ , id¡-

s.MessageReceiveOrder+1),

isp-st :PetriNet!PlaceToTransArc(source <-l,target <-n),... fsp1-

ft:PetriNet!PlaceToTransArc(

source<-r,

target<-thisModule.resolveTemp(thisModule.root,’al’)), frp1-

ft:PetriNet!PlaceToTransArc(

source<-d,target<-thisModule.resolveTemp(thisModule.root,’al’))

}

15

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

Parallel Transformation Rules

rule Parallel{

from

c:SequenceDiagram!CombinedFragment (c.IsParallel())

to

pl:PetriNet!Place (

name<-’Operator Parallel’), pl2:PetriNet!Place (

name<-’Operator Parallel’), nl:PetriNet!Transition (

name<-’Operator Parallel Begin’), tl:PetriNet!Place (

name<-’Operator Parallel’), tl2:PetriNet!Place (

name<-’Operator Parallel’), kl:PetriNet!Transition (

name<-’Operator Parallel End’), pl-nl:PetriNet!PlaceToTransArc(source <-

pl,

target <-nl),

pl2-nl:PetriNet!PlaceToTransArc(

source <-pl2, target <-nl),

tl-kl:PetriNet!TransToPlaceArc(source <-kl,target <-tl),

pl2-nll:PetriNet!TransToPlaceArc(source <-kl,target <-tl2)

}

rule ParallelCase1 {

from

s:SequenceDiagram!Message(s.FirstSendMessage() and

s.FirstReceiveMessage() and s.IsTheLastSend() and s.IsTheLastReceive())

c:SequenceDiagram!CombinedFragment (c.IsParallel())

to l:PetriNet!Place(

name<-’Send’+ s.name +’.Before =’+ s.SourceLifeLineName +’.Begin’,id

<-s.MessageSendOrder),n:PetriNet!Transition(

name<-’Send ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’), r:PetriNet!Place (

name<-’Send’+ s.name +’.After =’+ s.SourceLifeLineName +’.End’,id <-

s.MessageSendOrder+1),

m:PetriNet!Place(name<-s.name), t:PetriNet!Place (

name<-’Receive’+ s.name +’.Before =’+ s.TargetLifeLineName

+’.Begin’,id<-s.MessageReceiveOrder), p:PetriNet!Transition(

name<-’Receive ’+ s.name +’(’+ s.SourceLifeLineName+ ’,’+

s.TargetLifeLineName+ ’)’), d:PetriNet!Place (

name<-’Receive’+ s.name +’.After =’+ s.SourceLifeLineName +’.End’

,id<-s.MessageReceiveOrder+1),

tl-kl:PetriNet!TransToPlaceArc(source <-kl,target <-tl),

pl2-nll:PetriNet!TransToPlaceArc(source <-kl,target <-tl2)... d-

kl:PetriNet!PlaceToTransArc(source<-d,

target<-thisModule.resolveTemp(thisModule.root,’kl’))

}

16

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

5. A CASE STUDY: A PHONE SYSTEM

To validate the proposed transformation, we choose a Phone System as

a case study. Sequence diagram shown in the Figure 7, illustrates a basic

interaction between three objects Caller, Phone and Receiver. The use

case of this interaction is carried out as follows:

• Caller lifts the Phone.

• Dial-tone is heard by the Caller.

• Caller composes the number.

• Caller is connected to the network (Connec t tone) .

• Ring-tone is heard by the Caller (Receiver is not busy) .

• Receiver’s phone rings.

• Receiver answers the Caller.

• Caller is talking to the Receiver.

• Receiver is talking to the Caller.

• Disconnexion operation.

• Caller hangs up.

This simple procedure is depicted in the sequence diagram in Figure 7,

while Figure 8 shows a possible abstract syntax of the same diagram

according to the metamodel we have defined above. The Phone System

model after applying the steps of the transformation is seen in Figure 9.

We have now reached a Petri Net corresponding to the Phone System.

Figure 7. Sequence diagram of the phone system

17

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

6. IMPLEMENTATION

We have chosen Atlas Transformation Language (ATL) [8][7] under the

Eclipse development platform [6] to express the transformation rules.

ATL is a model transformation language that contains a mixture of

declarative and imperative constructs. ATL is accompanied b y a set

of tools built on top of the Eclipse platform. According to the adopted

transformation process, the implementation of this process requires the

following steps:

1. The r ep r esen ta t ion of the s o u rce metamodel d e s c r i b e d

in UML2- s e q u e n c e diagram i n Ecore Diagram T o o l which

generates An Ecore file named Sequence Diagram.ecore described in XMI

language [14].

2. The representation of the target metamodel described in Petri Nets in

Ecore Diagram Tool which generates an Ecore file named PetriNet.ecore

described in XMI language.

3. The representation of a model instance, i.e. a sequence diagram, of the

source metamodel in Ecore file.

4. Applying the rules of model transformation specified in ATL

language to the source model. This process generates an XMI file

containing a Petri Net describing formally the behavior of the source

sequence diagram.

18

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

Figure 8. Sequence diagram for the phone system in abstract syntax

19

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

Figure 9. An extract f r o m Petri Net for the phone system in abstract syntax

7. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a transformation from UML 2 sequence

diagrams into Petri Nets. A set of rules was defined to govern the

transformation p r o c e s s . On the basis of this transformation it is

possible to accomplish verification of the dynamic model of the real

system expressed by a sequence diagram. Our approach w as

implemented using the ATL language. A Phone System case study

was used to illustrate the transformation technique. This work still in

progress so we plan to complete it further. First, one direction fo r

future work can be to extend this transformation to other operators

such as ignore and loop. Second, we need to better tune the rules, to

realize if they can be automated [1]. Third, i s to generate Java code

automatically from UML 2 sequence diagrams [22].

20

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

REFERENCES

[1] W. Alouini, O. Guedhami, S. Hammoudi, M.Gammoudi, and D. Lopes.

Semiautomatic Generation of Transformation Rules in Model Driven

Engineering: The Challenge and First S t ep s . International Journal of Software

Engineering and Its Applications (IJSEA), 5(1), (2011).

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language, Version

1.0. Rational Software Corporation, (2010).

[3] A. Chaoui, R. Elmansouri, W. Saadi, and E. Kerkouche. From UML Sequence

Diagrams to ECATNets: a Graph Transformation based Approach for modelling

and analysis. In proceedings of The 4th International Conference on Information

Technology ICIT 2009, June 3rd, (2009).

[4] H.Y. Chen, C. Li, and T.H. Tse. Transforming of UML Interaction Diagrams into

Contract Specifications for Object-Oriented Testing. In Proceedings of the 2007

IEEE International Conference on Systems, Man, and Cybernetics, (2007).

[5] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches.

In OOSPLA’03, W o r k s h o p on Generative Techniques in the Context of Model-

Driven Architecture. Anaheim, USA, (2007).

[6] Eclipse Official Site: http::/www.eclipse.org.

[7] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like

Transformation Language. In Proceedings OOPSLA’06 Companion to the 21st

ACM SIGPLAN symposium on Object-oriented programming systems, languages,

and applications, (2006).

[8] F. Jouault and I. Kurtev. Transforming Models with ATL. In J.M. Bruel, editor,

MODELS Workshop, LNCS3844. Montego Bay, Jamaica, (2005).

[9] M. Kessentini, A. Bouchoucha, H. Sahraoui, and M. Boukadoum. Example-

Based Sequence Diagrams to Colored Petri Nets Transformation Using Heuristic

Search. In T. Kuhne et al. (Eds): ECMFA 2010, LNCS 6138. Springer-Verlag

Berlin Heidelberg, (2010).

[10] E. Merah, N . Messaoudi, H . Saidi, and A. Chaoui. Design of ATL Rules for

Transforming UML 2 Communication Diagrams into Büchi Automata. In

International Journal of Software Engineering and Its Applications V o l . 7 , No.2,

March, (2013).

[11] H. Motameni a n d T. Ghassempouri. Transforming Fuzzy Communication

Diagram to Fuzzy Petri Net. American J o u r n a l of Scientific Research, 1 6 ,

(2011).

[12] T. Murata. Petri ne ts : Properties, Analysis and Applications. In Proceedings of

the IEEE, volume 77, (1989).

[13] Object Management Group. OMG Unified Modeling Language (OMG UML),

Superstructure, V2.1.2. (2007).

[14] Object Management Group XMI Specification. http://www.omg/spec/xmi/2.4.1.

(2011).

[15] M. Ait Oubelli, N. Younsi, A. Amirat, and A. Menasria. From UML 2.0 Sequence

Diagrams to PROMELA code by Graph Transformation using AToM3. In CIIA,

volume 825 of CEUR Workshop Proceedings, CEUR-WS.org, (2011).

http://www.omg/spec/xmi/2.4.1
http://www.omg/spec/xmi/2.4.1

21

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

[16] T. Pender. UML Bible. John Wiley & Sons, (2003).

[17] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Publisher, (2005).

[18] W. Reisig. Petri nets - An Introduction. Springer, (1985).

[19] O.R. Ribeiro and J.M. Fern. Some Rules to Transform Sequence Diagrams

into Coloured Petri Nets. In In 7th Workshop and Tutorial on Practical Use of

Coloured Petri Nets and the CPN Tools, (2006).

[20] H. Shen, A. Virani, and J. Niu. Formalize UML 2 Sequence Diagrams. High

Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE.,

(2008).

[21] I. Trickovic. Transformation of the State Diagram of the Unified Modeling

Language into a Petri Nets Model. NOVI SAD J. MATH, 28(3), (1998).

[22] M. Usman and A. Nadeem. Automatic Generation of Java Code from UML

Diagrams using UJECTOR. International Journal of Software Engineering and

Its Applications (IJSEA), 3(2), (2009).

