
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 12

HOV-kNN: A New Algorithm to

Nearest Neighbor Search in

Dynamic Space

Mohammad Reza Abbasifard
Department of Computer Engineering,

Iran University of Science and Technology,

Tehran, Iran

Hassan Naderi
Department of Computer Engineering,

Iran University of Science and Technology,

Tehran, Iran

Mohadese Mirjalili
Department of Computer Engineering,

Iran University of Science and Technology,

Tehran, Iran

ABSTRACT
Nearest neighbor search is one of the most important problem in computer science due to

its numerous applications. Recently, researchers have difficulty to find nearest neighbors in

a dynamic space. Unfortunately, in contrast to static space, there are not many works in this

new area. In this paper we introduce a new nearest neighbor search algorithm (called

HOV-kNN) suitable for dynamic space due to eliminating widespread preprocessing step in

static approaches. The basic idea of our algorithm is eliminating unnecessary computations

in Higher Order Voronoi Diagram (HOVD) to efficiently find nearest neighbors. The

proposed algorithm can report k-nearest neighbor with time complexity O(knlogn) in

contrast to previous work which wasO(k2nlogn). In order to show its accuracy, we have

implemented this algorithm and evaluated is using an automatic and randomly generated

data point set.

Keywords

Nearest Neighbor search, Dynamic Space, Higher Order Voronoi Diagram.

1. INTRODUCTION

The Nearest Neighbor search (NNS) is one of the main problems in

computer science with numerous applications such as: pattern recognition,

machine learning, information retrieval and spatio-temporal databases [1-6].

Different approaches and algorithms have been proposed to these diverse

applications. In a well-known categorization, these approaches and

algorithms could be divided into static and dynamic (moving points). The

http://www.cs.bu.edu/fac/gkollios/ada05/LectNotes/lect16-05.ppt

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 13

existing algorithms and approaches can be divided into three categories,

based on the fact that whether the query points and/or data objects are

moving. They are (i) static kNN query for static objects, (ii) moving

kNNquery for static objects, and (iii) moving kNN query for moving objects

[15].

In the first category data points as well as query point(s) have stationary

positions [4, 5]. Most of these approaches, first index data points by

performing a pre-processing operation in order to constructing a specific

data structure. It’s usually possible to carry out different search algorithms

on a given data structure to find nearest neighbors. Unfortunately, the pre-

processing step, index construction, has a high complexity and takes more

time in comparison to search step. This time could be reasonable when the

space is static, because by just constructing the data structure multiple

queries can be accomplished. In other words, taken time to pre-processing

step will be amortized over query execution time. In this case, searching

algorithm has a logarithmic time complexity. Therefore, these approaches

are useful, when it’s necessary to have a high velocity query execution on

large stationary data volume.

Some applications need to have the answer to a query as soon as the data is

accessible, and they cannot tolerate the pre-processing execution time. For

example, in a dynamic space when data points are moving, spending such

time to construct a temporary index is illogical. As a result approaches that

act very well in static space may be useless in dynamic one.

In this paper a new method, so called HOV-kNN, suitable for finding k

nearest neighbor in a dynamic environment, will be presented. In k-nearest

neighbor search problem, given a set P of points in a d-dimensional

Euclidian space𝑅𝑑 (𝑃 ⊂ 𝑅𝑑) and a query point q (𝑞 ∈ 𝑅𝑑), the problem is

to find k nearest points to the given query point q [2, 7]. Proposed algorithm

has a good query execution complexity 𝑂(𝑘𝑛𝑙𝑜𝑔𝑛) without enduring from

time-consuming pre-processing process. This approach is based on the well-

known Voronoi diagrams (VD) [11]. As an innovation, we have changed the

Fortune algorithm [13] in order to created order k Voronoi diagrams that

will be used for finding kNN.

The organization of this paper is as follow. Next section gives an overview

on related works. In section 3 basic concepts and definitions have been

presented. Section 4 our new approach HOV-kNN is explained. Our

experimental results are discussed in section 5. We have finished our paper

with a conclusion and future woks in section 6.

2. RELATED WORKS

Recently, many methods have been proposed for k-nearest neighbor search

problem. A naive solution for the NNS problem is using linear search

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 14

method that computes distance from the query to every single point in the

dataset and returns the k closest points. This approach is guaranteed to find

the exact nearest neighbors [6]. However, this solution can be expensive for

massive datasets. So approximate nearest neighbor search algorithms are

presented even for static spaces [2].

One of the main parts in NNS problem is data structure that is roughly used

in every approach. Among different data structures, various tree search most

used structures which can be applied in both static and dynamic spaces.

Listing proposed solutions to kNN for static space is out of scope of this

paper. The interested reader can refer to more comprehensive and detailed

discussions of this subject by [4, 5]. Just to name some more important

structures, we can point to kd-tree, ball-tree, R-tree, R*-tree, B-tree and X-

tree [2-5, 8, 9].In contrast, there are a number of papers that use graph data

structure for nearest neighbor search. For example, Hajebi et al have

performed Hill-climbing in kNN graph. They built a nearest neighbor graph

in an offline phase, and performed a greedy search on it to find the closest

node to the query [6].

However, the focus of this paper is on dynamic space. In contrast to static

space, finding nearest neighbors in a dynamic environment is a new topic of

research with relatively limited number of publications. Song and

Roussopoulos have proposed Fixed Upper Bound Algorithm, Lazy Search

Algorithm, Pre-fetching Search Algorithm and Dual Buffer Search to find k-

nearest neighbors for a moving query point in a static space with stationary

data points [8]. Güting et al have presented a filter-and-refine approach to

kNN search problem in a space that both data points and query points are

moving. The filter step traverses the index and creates a stream of so-called

units (linear pieces of a trajectory) as a superset of the units required to build

query’s results. The refinement step processes an ordered stream of units

and determines the pieces of units forming the final precise result

[9].Frentzos et al showed mechanisms to perform NN search on structures

such as R-tree, TB-Tree, 3D-R-Tree for moving objects trajectories. They

used depth-first and best-first algorithms in their method [10].

As mentioned, we use Voronoi diagram [11] to find kNN in a dynamic

space. D.T. Lee used Voronoi diagram to find k nearest neighbor. He

described an algorithm for computing order-k Voronoi diagram in

𝑂(𝑘2𝑛𝑙𝑜𝑔𝑛) time and 𝑂(𝑘2(𝑁 − 𝑘)) space [12] which is a sequential

algorithm. Henning Meyerhenke presented and analyzed a parallel

algorithm for constructing HOVD for two parallel models: PRAM and CGM

[14]. In these models he used Lee’s iterative approach but his model stake

𝑂
𝑘2(𝑛−𝑘)𝑙𝑜𝑔𝑛

𝑝
 running time and 𝑂(𝑘) communication rounds on a CGM

http://en.wikipedia.org/wiki/Depth-first_search
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 15

with 𝑂(
𝑘2(𝑁−𝑘)

𝑝
) local memory per processor [14]. p is the number of

participant machines.

3. BASIC CONCEPTS AND DEFINITIONS

Let P be a set of n sites (points) in the Euclidean plane. The Voronoi

diagram informally is a subdivision of the plane into cells (Figure 1)which

each point of that has the same closest site [11].

Figure 1.Voronoi Diagram

Euclidean distance between two points p and q is denoted by 𝑑𝑖𝑠𝑡 𝑝, 𝑞 :

𝑑𝑖𝑠𝑡 𝑝, 𝑞 : = (𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)2 (1)

Definition (Voronoi diagram):Let 𝑃 = {𝑝1,𝑝2,… ,𝑝𝑛} be a set of n distinct

points (so called sites) in the plane. Voronoi diagram of P is defined as the

subdivision of the plane into n cells, one for each site in P, with the

characteristic that q in the cell corresponding to site 𝑝𝑖 if𝑑𝑖𝑠𝑡 𝑞, 𝑝𝑖 <

𝑑𝑖𝑠𝑡 𝑞,𝑝𝑗 for each 𝑝𝑗 ∈ 𝑃 𝑤𝑖𝑡ℎ 𝑗 ≠ 𝑖 [11].

Historically, 𝑂(𝑛2)incremental algorithms for computing VD were known

for many years. Then 𝑂 𝑛𝑙𝑜𝑔𝑛 algorithm was introduced that this

algorithm was based on divide and conquer, which was complex and

difficult to understand. Then Steven Fortune [13] proposed a plane sweep

algorithm, which provided a simpler 𝑂 𝑛𝑙𝑜𝑔𝑛 solution to the problem.

Instead of partitioning the space into regions according to the closest sites,

one can also partition it according to the k closest sites, for some 1 ≤ 𝑘 ≤

𝑛 − 1. The diagrams obtained in this way are called higher-order Voronoi

diagrams or HOVD, and for given k, the diagram is called the order-k

Voronoi diagram [11]. Note that the order-1 Voronoi diagram is nothing

more than the standard VD. The order-(n−1) Voronoi diagram is the

farthest-point Voronoi diagram (Given a set P of points in the plane, a point

of P has a cell in the farthest-point VD if it is a vertex of the convex hull),

because the Voronoi cell of a point 𝑝𝑖 is now the region of points for which

𝑝𝑖 is the farthest site. Currently the best known algorithms for computing the

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 16

order-k Voronoi diagram run in 𝑂(𝑛𝑙𝑜𝑔3𝑛 + 𝑛𝑘) time and in 𝑂(𝑛𝑙𝑜𝑔𝑛 +

𝑛𝑘2𝑐𝑙𝑜𝑔 ∗𝑘) time, where c is a constant [11].

Figure 2. Farthest-Point Voronoi diagram [11]

Consider x and y as two distinct elements of P. A set of points construct a

cell in the second order Voronoi diagram for which the nearest and the

second nearest neighbors are x and y. Second order Voronoi diagram can be

used when we are interested in the two closest points, and we want a

diagram to captures that.

Figure 3.An instant of HOVD [11]

4. SUGGESTED ALGORITHM

As mentioned before, one of the best algorithms to construct Voronoi

diagram is Fortune algorithm. Furthermore HOVD can be used to find k-

nearest neighbors [12]. D.T. Lee used an 𝑂 𝑘2𝑛𝑙𝑜𝑔𝑛 algorithm to

construct a complete HOVD to obtain nearest neighbors. In D.T. Lee's

algorithm, at first the first order Voronoi diagram is obtained, and then finds

the region of diagram that contains query point. The point that is in this

region is defined as a first neighbor of query point. In the next step of Lee’s

algorithm, this nearest point to the query will be omitted from dataset, and

this process will be repeated. In other words, the Voronoi diagram is built

on the rest of points. In the second repetition of this process, the second

neighbor is found and so on. So the nearer neighbors to a given query point

are found sequentially.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 17

However we think that nearest neighbors can be finding without completing

the process of HOVD construction. More precisely, in Lee’s algorithm each

time after omitting each nearest neighbor, next order of Voronoi diagram is

made completely (edges and vertices) and then for computing a neighbor

performs the search algorithm. In contrast, in our algorithm, the vertices of

Voronoi diagram are only computed and the neighbors of the query are

found during process of vertices computing. So in our algorithm, the

overhead of edge computing to find neighbors is effectively omitted. As we

will show later in this paper, by eliminating this superfluous computation a

more efficiently algorithm in term of time complexity will be obtained.

We use Fortune algorithm to create Voronoi diagram. Because of space

limitation in this paper we don’t describe this algorithm and the respectable

readers can refer to [11, 13]. By moving sweep line in Fortune algorithm,

two set of events are emerged; site event and circle event [11]. To find k

nearest neighbors in our algorithm, the developed circle events are

employed. There are specific circle events in the algorithm that are not

actual circle events named false alarm circle events. Our algorithm (see the

next section) deals efficiently with real circle events and in contrast doesn't

superfluously consider the false alarm circle event. A point on the plane is

inside a circle when its distance from the center of the circle is less than

radius of the circle. The vertices of a Voronoi diagram are the center of

encompassing triangles where each 3 points (sites) constitute the triangles.

The main purpose of our algorithm is to find out a circle in which the

desired query is located.

As the proposed algorithm does not need pre-processing, it’s completely

appropriate for dynamic environment where we can't endure very time

consuming pre-processing overheads. Because, as the readers may know, in

k-NN search methods a larger percent of time is dedicated to constructing a

data structure (usually in the form of a tree). This algorithm can be efficient,

especially when there are a large number of points while their motion is

considerable.

4.1 HOV-kNN algorithm

After describing our algorithm in the previous paragraph briefly, we will

elaborate it formally in this section. When the first order Voronoi diagram is

constructed, some of the query neighbors can be obtained in complexity of

the Fortune algorithm (i.e.𝑂(𝑛𝑙𝑜𝑔𝑛)). This fact forms the first step of our

algorithm. When the discovered circle event in HandleCircleEvent of the

Fortune algorithm is real (initialized by the variable “check” in line 6 of the

algorithm, and by default function HandleCircleEvent returns “true” when

circle even is real) the query distance is measured from center of the circle.

Moreover, when the condition in line 7.i of the algorithm is true, the three

points that constitute the circle are added to NEARS list if not been added

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 18

before (function PUSH-TAG (p) shows whether it is added to NEAR list or

not).

1) Input : q , a query
2) Output: list NEARS, k nearest neighbors.
3) Procedure :
4) Initialization :
5) NEARS ={}, K nearest neighbors

 , Check = false, MOD = 0, V = {} (hold Voronoipoints(;
6) Check = HandleCircleEvent()
7) If check= true, then -- detect a true circle event.

i) If distance(q , o) < r Then
(1) If PUSH-TAG(p1) = false , Then

(a) add p1 to NEARS
(2) If PUSH-TAG (p2) = false , Then

(a) add p2 to NEARS
ii) If PUSH-TAG(p3) = false, Then

(a) add p3 to NEARS

Real circle events are discovered up to this point and the points that

constitute the events are added to neighbor list of the query. As pointed out

earlier, the preferred result is obtained, if “k” inputs are equal or lesser than

number of the obtained neighbors a𝑂(𝑛𝑙𝑜𝑔𝑛)complexity.

8) if SIZE (NEARS) >= k , then
a. sort (NERAS) - - sort NEARS by distance
b. for i = 1 to k

i. print (NEARS);
9) else if SIZE (NEARS) = k

ii. print(NEARS);

The algorithm enters the second step if the conditions of line 8 and 9 in the

first part are not met. The second part compute vertices of Voronoi

sequentially, so that the obtained vertices are HOV vertex. Under sequential

method for developing HOV [12], the vertices of the HOV are obtained by

omitting the closer neighbors. Here, however, to find more neighbors

through sequential method, loop one of the closest neighbor and loop one of

the farthest neighbor are deleted alternatively from the set of the point. This

leads to new circles that encompass the query. Afterward, the same

calculations described in section one are carried out for the remaining points

(the removed neighbors are recorded a list named REMOVED_POINTS).

The calculations are carried out until the loop condition in line 5 is met.

10) Else if (SIZE(NEARS) < k)
c. if mod MOD 2 = 0 , then

i. add nearest_Point to REMOVED_POINT ;
ii. Remove(P,nearest_Point);

d. if mod MOD 2 = 1 , then

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 19

i. add farthest_Point to REMOVED_POINT ;
ii. Remove(P,nearest_Point);

11) Increment MOD ;
12) produce line 6 to 9 from part1 for remind points P ;
13) Repeat until k >= SIZE _ LIST (NEARS) + SIZE _ LIST (REMOVED_POINT) ;
14) PRINT (NEARS) ;

Should the number of neighbors be less than required number of neighbors,

the algorithm starts the third part. At this part, Voronoi vertices and their

distance from query are recorded in a list. As explained for the first part of

the algorithm, the Voronoi vertices in the Fortune algorithm and their

distance to the query are enough to check realization of the condition of line

8. The vertices and their distance to the query are recorded. Following line

will be added after line 7 in the first part:

add pair(Voronoi_Vertex ,distance_To_Query) to List V

Moreover, along with adding input point to the list of the neighbors, their

distance to the query must be added to the list.

Using these two lists (after being filled, the lists can be ranked based on

their distance to query) the nearest point or Voronoi vertices is obtainable.

The nearest point can be considered as the input query and the whole

process of 1
st
 and 2

nd
 parts of the algorithm is repeated until required

number of neighbors is achieved. Finally, to have more number of

neighbors, the method can be repeated sequentially over the closer points to

the query. This part of the algorithm has the same complexities of the two

other sections as the whole process to find the preliminary query is repeated

for the representatives of the query.

Figure 4.implementation of HOVD

In Figure 4 "o" is a vertex of Voronoi and a center point of circle event that

is created by 𝑝1, 𝑝2 and 𝑝3. Based on algorithm the circle that encompasses

the query, add 𝑝1, 𝑝2 and 𝑝3 points as neighbors of query to the neighbors'

list. Here k is near to n, so by computing higher order of Voronoi, the circle

will be bigger and bigger. Thus farther neighbors are added to query

neighbors' list.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 20

4.2 The complexity of HOV-kNN

As mentioned before, HOV-kNN algorithm has a time complexity lesser

than the time complexity of D.T. Lee’s algorithm. To show this fact,

consider the presented algorithm in the previous section. Line 13 explains

that the main body of algorithm must be repeated k times in which "k" are

the number of neighbors that should be found. In each repetition one of the

query’s neighbors are detected by algorithm and subsequently eliminated

from dataset. The principle part of our algorithm that is the most time

consuming part too is between lines 6 and 9. This line recalls modified

Fortune algorithm which has a time complexity𝑂(𝑛𝑙𝑜𝑔𝑛). Therefore the

overall complexity of our algorithm will be:

 𝑂 𝑛𝑙𝑜𝑔𝑛

𝑘

𝑖=1

= 𝑂 𝑛𝑙𝑜𝑔𝑛 1

𝑘

𝑖=0

= 𝑘𝑂 𝑛𝑙𝑜𝑔𝑛 = 𝑂 𝑘𝑛𝑙𝑜𝑔𝑛 (2)

In comparison to the algorithm introduced in [12] (which has a time

complexity𝑂(𝑘2𝑛𝑙𝑜𝑔𝑛)) our algorithm is faster k times. The main reason of

this difference is that Lee’s algorithm completely computes the HOVD,

while ours exploits a fraction of HOVD construction process. In term of

space complexity, the space complexity of our algorithm is the same as the

space complexity of Fortune algorithm: 𝑂(𝑛).

5. IMPLEMENTATION AND EVALUATION

This section introduces the results of the HOV-kNN algorithm and

compares the results with other algorithms. We use Voronoi diagram which

is used to find k nearest neighbor points that is less complicated. The

proposed algorithm was implemented using C++. For maintaining data

points vector data structure, which is one of the C++ standard libraries, was

used. The input data points used in the program test were adopted randomly.

To reach preferred data distribution, not too close/far points, they were

generated under specific conditions. For instance, for 100 input points, the

point generation range is 0-100 and for 500 input points the range is 0-500.

To ensure accuracy and validity of the output, a simple kNN algorithm was

implemented and the outputs of the two algorithms were compared (equal

input, equal query). Outputs evaluation was also carried out sequentially and

the outputs were stored in two separate files. Afterward, to compare

similarity rate, the two files were used as input to another program.

The evaluation was also conducted in two steps. First the parameter “k” was

taken as a constant and the evaluation was performed using different points

of data as input. As pictured in Figure 5, accuracy of the algorithm is more

than 90%. In this diagram, the number of inputs in dataset varies between 10

and 100000. At the second step, the evaluation was conducted with different

values of k, while the number of input data was stationary. Accuracy of the

algorithm was obtained 74% while “k” was between 10 and 500 (Figure 6).

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 21

Figure 5. The accuracy of the algorithm for constant k and different points of data as input

Figure 6. The accuracy of the algorithm for variable k and constant data as input

6. CONCLUSION AND FUTURE WORK

We have introduced a new algorithm (named HOV-kNN) with time

complexity 𝑂(𝑘𝑛𝑙𝑜𝑔𝑛) and computing order k Voronoi diagram to find k

nearest neighbor in a set of N points in Euclidean space. The new proposed

algorithm finds k nearest neighbors in two stages: 1) during constructing the

first order Voronoi diagram, some of the query neighbors can be obtained in

complexity of the Fortune algorithm; 2) computing vertices of Voronoi

sequentially. Because of eliminating pre-processing steps, this algorithm is

significantly suitable for dynamic space in which data points are moving.

The experiments are done in twofold: 1) constant number of data points

while k is variable, and 2) variable number of data points while k is

constant. The obtained results show that this algorithm has sufficient

accuracy to be applied in real situation. In our future work we will try to

give a parallel version of our algorithm in order to efficiently

implementation a parallel machine to obtain more speed implementation.

Such an algorithm will be appropriate when the numbers of input points are

massive and probably distributed on a network of computers.

0%
20%
40%
60%
80%

100%

5
0

2
0

0

3
5

0

5
0

0

2
0

0
0

5
0

0
0

8
0

0
0

2
0

0
0

0

5
0

0
0

0

8
0

0
0

0

p
er

ce
n

t

input data

Accuracy

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

p
er

ce
n

t

k

Accuracy

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 9, No. 1. JANUARY 2014 22

REFERENCES
[1] Lifshits, Y.Nearest neighbor search: algorithmic perspective, SIGSPATIAL Special.

Vol. 2, No 2, 2010, 12-15.

[2] Shakhnarovich, G., Darrell, T., and Indyk, P.Nearest Neighbor Methods in Learning

and Vision: Theory and Practice, The MIT Press, United States, 2005.

[3] Andoni, A.Nearest Neighbor Search - the Old, the New, and the Impossible, Doctor of

Philosophy, Electrical Engineering and Computer Science, Massachusetts Institute of

Technology,2009.

[4] Bhatia, N., and Ashev, V. Survey of Nearest Neighbor Techniques, International

Journal of Computer Science and Information Security, Vol. 8, No 2, 2010, 1- 4.

[5] Dhanabal, S., and Chandramathi, S. A Review of various k-Nearest Neighbor Query

Processing Techniques, Computer Applications, Vol. 31, No 7, 2011, 14-22.

[6] Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., and Zhang, H.Fast approximate nearest-

neighbor search with k-nearest neighbor graph, In Proceedings of 22 international joint

conference on Artificial Intelligence, Vol. 2 (IJCAI'11), Toby Walsh (Ed.), 2011, 1312-

1317.

[7] Fukunaga, K. Narendra, P. M. A Branch and Bound Algorithm for Computing k-

Nearest Neighbors, IEEE Transactions on Computer,Vol. 24, No 7, 1975, 750-753.

[8] Song, Z., Roussopoulos, N. K-Nearest Neighbor Search for Moving Query Point, In

Proceedings of the 7th International Symposium on Advances in Spatial and Temporal

Databases (Redondo Beach, California, USA), Springer-Verlag, 2001, 79-96.

[9] Güting, R., Behr, T., and Xu, J. Efficient k-Nearest Neighbor Search on moving object

trajectories, The VLDB Journal 19, 5, 2010, 687-714.

[10] Frentzos, E., Gratsias, K., Pelekis, N., and Theodoridis, Y.Algorithms for Nearest

Neighbor Search on Moving Object Trajectories, Geoinformatica 11, 2, 2007,159-193.

[11] Berg, M. , Cheong, O. , Kreveld, M., and Overmars, M.Computational Geometry:

Algorithms and Applications, Third Edition, Springer-Verlag, 2008.

[12] Lee, D. T. On k-Nearest Neighbor Voronoi Diagrams in the Plane, Computers, IEEE

Transactions on Volume:C-31, Issue:6, 1982, 478–487.

[13] Fortune, S. A sweep line algorithm for Voronoi diagrams, Proceedings of the second

annual symposium on Computational geometry, Yorktown Heights, New York, United

States, 1986, 313–322.

[14] Meyerhenke, H. Constructing Higher-Order Voronoi Diagrams in Parallel,

Proceedings of the 21st European Workshop on Computational Geometry, Eindhoven,

The Netherlands, 2005, 123-126.

[15] Gao, Y., Zheng, B., Chen, G., and Li, Q. Algorithms for constrained k-nearest neighbor

queries over moving object trajectories, Geoinformatica 14, 2 (April 2010), 241-276.

This paper may be cited as:

Abbasifard, M. R., Naderi, H. and Mirjalili, M., 2014. HOV-kNN: A New

Algorithm to Nearest Neighbor Search in Dynamic Space. International

Journal of Computer Science and Business Informatics, Vol. 9, No. 1, pp.

12-22.

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/175-3625714-9776460?_encoding=UTF8&field-author=Mark%20de%20Berg&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/175-3625714-9776460?_encoding=UTF8&field-author=Otfried%20Cheong&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3/175-3625714-9776460?_encoding=UTF8&field-author=Marc%20van%20Kreveld&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4/175-3625714-9776460?_encoding=UTF8&field-author=Mark%20Overmars&search-alias=books&sort=relevancerank
http://www.springer.com/?SGWID=3-102-0-0-0/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=35216

