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ABSTRACT 
Nearest neighbor search is one of the most important problem in computer science due to 

its numerous applications. Recently, researchers have difficulty to find nearest neighbors in 

a dynamic space. Unfortunately, in contrast to static space, there are not many works in this 

new area.  In this paper we introduce a new nearest neighbor search algorithm (called 

HOV-kNN) suitable for dynamic space due to eliminating widespread preprocessing step in 

static approaches. The basic idea of our algorithm is eliminating unnecessary computations 

in Higher Order Voronoi Diagram (HOVD) to efficiently find nearest neighbors. The 

proposed algorithm can report k-nearest neighbor with time complexity O(knlogn) in 

contrast to previous work which wasO(k2nlogn). In order to show its accuracy, we have 

implemented this algorithm and evaluated is using an automatic and randomly generated 

data point set. 

Keywords 
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1. INTRODUCTION 

The Nearest Neighbor search (NNS) is one of the main problems in 

computer science with numerous applications such as: pattern recognition, 

machine learning, information retrieval and spatio-temporal databases [1-6]. 

Different approaches and algorithms have been proposed to these diverse 

applications. In a well-known categorization, these approaches and 

algorithms could be divided into static and dynamic (moving points). The 

http://www.cs.bu.edu/fac/gkollios/ada05/LectNotes/lect16-05.ppt
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existing algorithms and approaches can be divided into three categories, 

based on the fact that whether the query points and/or data objects are 

moving. They are (i) static kNN query for static objects, (ii) moving 

kNNquery for static objects, and (iii) moving kNN query for moving objects 

[15]. 

In the first category data points as well as query point(s) have stationary 

positions [4, 5]. Most of these approaches, first index data points by 

performing a pre-processing operation in order to constructing a specific 

data structure. It’s usually possible to carry out different search algorithms 

on a given data structure to find nearest neighbors. Unfortunately, the pre-

processing step, index construction,   has a high complexity and takes more 

time in comparison to search step. This time could be reasonable when the 

space is static, because by just constructing the data structure multiple 

queries can be accomplished. In other words, taken time to pre-processing 

step will be amortized over query execution time. In this case, searching 

algorithm has a logarithmic time complexity. Therefore, these approaches 

are useful, when it’s necessary to have a high velocity query execution on 

large stationary data volume. 

Some applications need to have the answer to a query as soon as the data is 

accessible, and they cannot tolerate the pre-processing execution time. For 

example, in a dynamic space when data points are moving, spending such 

time to construct a temporary index is illogical. As a result approaches that 

act very well in static space may be useless in dynamic one. 

In this paper a new method, so called HOV-kNN, suitable for finding k 

nearest neighbor in a dynamic environment, will be presented. In k-nearest 

neighbor search problem, given a set P of points in a d-dimensional 

Euclidian space𝑅𝑑  (𝑃 ⊂ 𝑅𝑑) and a query point q (𝑞 ∈ 𝑅𝑑), the problem is 

to find k nearest points to the given query point q [2, 7]. Proposed algorithm 

has a good query execution complexity 𝑂(𝑘𝑛𝑙𝑜𝑔𝑛) without enduring from 

time-consuming pre-processing process. This approach is based on the well-

known Voronoi diagrams (VD) [11]. As an innovation, we have changed the 

Fortune algorithm [13] in order to created order k Voronoi diagrams that 

will be used for finding kNN. 

The organization of this paper is as follow. Next section gives an overview 

on related works. In section 3 basic concepts and definitions have been 

presented. Section 4 our new approach HOV-kNN is explained. Our 

experimental results are discussed in section 5. We have finished our paper 

with a conclusion and future woks in section 6. 

2. RELATED WORKS 

Recently, many methods have been proposed for k-nearest neighbor search 

problem. A naive solution for the NNS problem is using linear search 
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method that computes distance from the query to every single point in the 

dataset and returns the k closest points. This approach is guaranteed to find 

the exact nearest neighbors [6]. However, this solution can be expensive for 

massive datasets. So approximate nearest neighbor search algorithms are 

presented even for static spaces [2]. 

One of the main parts in NNS problem is data structure that is roughly used 

in every approach. Among different data structures, various tree search most 

used structures which can be applied in both static and dynamic spaces. 

Listing proposed solutions to kNN for static space is out of scope of this 

paper. The interested reader can refer to more comprehensive and detailed 

discussions of this subject by [4, 5]. Just to name some more important 

structures, we can point to kd-tree, ball-tree, R-tree, R*-tree, B-tree and X-

tree [2-5, 8, 9].In contrast, there are a number of papers that use graph data 

structure for nearest neighbor search. For example, Hajebi et al have 

performed Hill-climbing in kNN graph. They built a nearest neighbor graph 

in an offline phase, and performed a greedy search on it to find the closest 

node to the query [6]. 

However, the focus of this paper is on dynamic space. In contrast to static 

space, finding nearest neighbors in a dynamic environment is a new topic of 

research with relatively limited number of publications. Song and 

Roussopoulos have proposed Fixed Upper Bound Algorithm, Lazy Search 

Algorithm, Pre-fetching Search Algorithm and Dual Buffer Search to find k-

nearest neighbors for a moving query point in a static space with stationary 

data points [8]. Güting et al have presented a filter-and-refine approach to 

kNN search problem in a space that both data points and query points are 

moving. The filter step traverses the index and creates a stream of so-called 

units (linear pieces of a trajectory) as a superset of the units required to build 

query’s results. The refinement step processes an ordered stream of units 

and determines the pieces of units forming the final precise result 

[9].Frentzos et al showed mechanisms to perform NN search on structures 

such as R-tree, TB-Tree, 3D-R-Tree for moving objects trajectories. They 

used depth-first and best-first algorithms in their method [10]. 

As mentioned, we use Voronoi diagram [11] to find kNN in a dynamic 

space. D.T. Lee used Voronoi diagram to find k nearest neighbor. He 

described an algorithm for computing order-k Voronoi diagram in 

𝑂(𝑘2𝑛𝑙𝑜𝑔𝑛) time and 𝑂(𝑘2(𝑁 − 𝑘)) space [12] which is a sequential 

algorithm. Henning Meyerhenke presented and analyzed a parallel 

algorithm for constructing HOVD for two parallel models: PRAM and CGM 

[14]. In these models he used Lee’s iterative approach but his model stake 

𝑂  
𝑘2(𝑛−𝑘)𝑙𝑜𝑔𝑛

𝑝
 running time and 𝑂(𝑘) communication rounds on a CGM 

http://en.wikipedia.org/wiki/Depth-first_search
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true
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with 𝑂(
𝑘2(𝑁−𝑘)

𝑝
) local memory per processor [14]. p is the number of 

participant machines. 

3. BASIC CONCEPTS AND DEFINITIONS 

Let P be a set of n sites (points) in the Euclidean plane. The Voronoi 

diagram informally is a subdivision of the plane into cells (Figure 1)which 

each point of that has the same closest site [11]. 

 

Figure 1.Voronoi Diagram 

Euclidean distance between two points p and q is denoted by 𝑑𝑖𝑠𝑡 𝑝, 𝑞 : 

𝑑𝑖𝑠𝑡 𝑝, 𝑞 : =  (𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)2                           (1) 

Definition (Voronoi diagram):Let 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} be a set of n distinct 

points (so called sites) in the plane. Voronoi diagram of P is defined as the 

subdivision of the plane into n cells, one for each site in P, with the 

characteristic that q in the cell corresponding to site 𝑝𝑖  if𝑑𝑖𝑠𝑡 𝑞, 𝑝𝑖 <

𝑑𝑖𝑠𝑡 𝑞, 𝑝𝑗   for each 𝑝𝑗 ∈ 𝑃 𝑤𝑖𝑡ℎ 𝑗 ≠ 𝑖 [11]. 

Historically, 𝑂(𝑛2)incremental algorithms for computing VD were known 

for many years. Then 𝑂 𝑛𝑙𝑜𝑔𝑛  algorithm was introduced that this 

algorithm was based on divide and conquer, which was complex and 

difficult to understand. Then Steven Fortune [13] proposed a plane sweep 

algorithm, which provided a simpler 𝑂 𝑛𝑙𝑜𝑔𝑛  solution to the problem. 

Instead of partitioning the space into regions according to the closest sites, 

one can also partition it according to the k closest sites, for some 1 ≤ 𝑘 ≤

𝑛 − 1. The diagrams obtained in this way are called higher-order Voronoi 

diagrams or HOVD, and for given k, the diagram is called the order-k 

Voronoi diagram [11]. Note that the order-1 Voronoi diagram is nothing 

more than the standard VD. The order-(n−1) Voronoi diagram is the 

farthest-point Voronoi diagram (Given a set P of points in the plane, a point 

of P has a cell in the farthest-point VD if it is a vertex of the convex hull), 

because the Voronoi cell of a point 𝑝𝑖  is now the region of points for which 

𝑝𝑖  is the farthest site. Currently the best known algorithms for computing the 
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order-k Voronoi diagram run in 𝑂(𝑛𝑙𝑜𝑔3𝑛 + 𝑛𝑘) time and in 𝑂(𝑛𝑙𝑜𝑔𝑛 +

𝑛𝑘2𝑐𝑙𝑜𝑔 ∗𝑘) time, where c is a constant [11]. 

 

Figure 2. Farthest-Point Voronoi diagram [11] 

Consider x and y as two distinct elements of P. A set of points construct a 

cell in the second order Voronoi diagram for which the nearest and the 

second nearest neighbors are x and y. Second order Voronoi diagram can be 

used when we are interested in the two closest points, and we want a 

diagram to captures that. 

 

Figure 3.An instant of HOVD [11] 

 

4. SUGGESTED ALGORITHM  

As mentioned before, one of the best algorithms to construct Voronoi 

diagram is Fortune algorithm. Furthermore HOVD can be used to find k-

nearest neighbors [12]. D.T. Lee used an 𝑂 𝑘2𝑛𝑙𝑜𝑔𝑛  algorithm to 

construct a complete HOVD to obtain nearest neighbors. In D.T. Lee's 

algorithm, at first the first order Voronoi diagram is obtained, and then finds 

the region of diagram that contains query point. The point that is in this 

region is defined as a first neighbor of query point. In the next step of Lee’s 

algorithm, this nearest point to the query will be omitted from dataset, and 

this process will be repeated. In other words, the Voronoi diagram is built 

on the rest of points. In the second repetition of this process, the second 

neighbor is found and so on. So the nearer neighbors to a given query point 

are found sequentially. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Der-Tsai%20Lee.QT.&searchWithin=p_Author_Ids:37280602000&newsearch=true
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However we think that nearest neighbors can be finding without completing 

the process of HOVD construction. More precisely, in Lee’s algorithm each 

time after omitting each nearest neighbor, next order of Voronoi diagram is 

made completely (edges and vertices) and then for computing a neighbor 

performs the search algorithm. In contrast, in our algorithm, the vertices of 

Voronoi diagram are only computed and the neighbors of the query are 

found during process of vertices computing. So in our algorithm, the 

overhead of edge computing to find neighbors is effectively omitted. As we 

will show later in this paper, by eliminating this superfluous computation a 

more efficiently algorithm in term of time complexity will be obtained. 

We use Fortune algorithm to create Voronoi diagram. Because of space 

limitation in this paper we don’t describe this algorithm and the respectable 

readers can refer to [11, 13]. By moving sweep line in Fortune algorithm, 

two set of events are emerged; site event and circle event [11]. To find k 

nearest neighbors in our algorithm, the developed circle events are 

employed. There are specific circle events in the algorithm that are not 

actual circle events named false alarm circle events. Our algorithm (see the 

next section) deals efficiently with real circle events and in contrast doesn't 

superfluously consider the false alarm circle event. A point on the plane is 

inside a circle when its distance from the center of the circle is less than 

radius of the circle. The vertices of a Voronoi diagram are the center of 

encompassing triangles where each 3 points (sites) constitute the triangles. 

The main purpose of our algorithm is to find out a circle in which the 

desired query is located. 

As the proposed algorithm does not need pre-processing, it’s completely 

appropriate for dynamic environment where we can't endure very time 

consuming pre-processing overheads. Because, as the readers may know, in 

k-NN search methods a larger percent of time is dedicated to constructing a 

data structure (usually in the form of a tree). This algorithm can be efficient, 

especially when there are a large number of points while their motion is 

considerable. 

4.1 HOV-kNN algorithm  

After describing our algorithm in the previous paragraph briefly, we will 

elaborate it formally in this section. When the first order Voronoi diagram is 

constructed, some of the query neighbors can be obtained in complexity of 

the Fortune algorithm (i.e.𝑂(𝑛𝑙𝑜𝑔𝑛)). This fact forms the first step of our 

algorithm. When the discovered circle event in HandleCircleEvent of the 

Fortune algorithm is real (initialized by the variable “check” in line 6 of the 

algorithm, and by default function HandleCircleEvent returns “true” when 

circle even is real) the query distance is measured from center of the circle. 

Moreover, when the condition in line 7.i of the algorithm is true, the three 

points that constitute the circle are added to NEARS list if not been added 
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before (function PUSH-TAG (p) shows whether it is added to NEAR list or 

not). 

 

1) Input : q , a query 
2) Output: list NEARS, k nearest neighbors. 
3) Procedure : 
4) Initialization : 
5) NEARS ={}, K nearest neighbors 

    , Check = false, MOD = 0, V = {} (hold Voronoipoints( ; 
6) Check = HandleCircleEvent() 
7) If check= true, then -- detect a true circle event. 

i) If distance(q , o) < r  Then  
(1) If PUSH-TAG(p1) = false , Then   

(a) add  p1  to NEARS 
(2) If  PUSH-TAG (p2) =  false , Then 

(a) add p2 to NEARS 
ii) If  PUSH-TAG(p3) = false, Then 

(a) add p3 to NEARS 

Real circle events are discovered up to this point and the points that 

constitute the events are added to neighbor list of the query. As pointed out 

earlier, the preferred result is obtained, if “k” inputs are equal or lesser than 

number of the obtained neighbors a𝑂(𝑛𝑙𝑜𝑔𝑛)complexity. 

8) if  SIZE (NEARS) >= k , then 
a. sort (NERAS )  - - sort NEARS by distance  
b. for  i = 1 to k 

i. print (NEARS); 
9) else if SIZE (NEARS) = k 

ii. print(NEARS); 

The algorithm enters the second step if the conditions of line 8 and 9 in the 

first part are not met. The second part compute vertices of Voronoi 

sequentially, so that the obtained vertices are HOV vertex. Under sequential 

method for developing HOV [12], the vertices of the HOV are obtained by 

omitting the closer neighbors. Here, however, to find more neighbors 

through sequential method, loop one of the closest neighbor and loop one of 

the farthest neighbor are deleted alternatively from the set of the point. This 

leads to new circles that encompass the query. Afterward, the same 

calculations described in section one are carried out for the remaining points 

(the removed neighbors are recorded a list named REMOVED_POINTS). 

The calculations are carried out until the loop condition in line 5 is met.  

10) Else if (SIZE(NEARS) < k ) 
c. if  mod MOD 2 = 0 , then 

i. add nearest_Point to REMOVED_POINT ; 
ii. Remove(P,nearest_Point); 

d. if  mod MOD 2 = 1 , then 
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i. add farthest_Point to  REMOVED_POINT ; 
ii. Remove(P,nearest_Point); 

11) Increment MOD ; 
12) produce line 6 to 9 from part1 for remind points P ; 
13) Repeat until k >= SIZE _ LIST (NEARS) + SIZE _ LIST (REMOVED_POINT) ; 
14) PRINT (NEARS) ; 

Should the number of neighbors be less than required number of neighbors, 

the algorithm starts the third part. At this part, Voronoi vertices and their 

distance from query are recorded in a list. As explained for the first part of 

the algorithm, the Voronoi vertices in the Fortune algorithm and their 

distance to the query are enough to check realization of the condition of line 

8. The vertices and their distance to the query are recorded. Following line 

will be added after line 7 in the first part: 

add pair(Voronoi_Vertex ,distance_To_Query) to List V 

Moreover, along with adding input point to the list of the neighbors, their 

distance to the query must be added to the list. 

Using these two lists (after being filled, the lists can be ranked based on 

their distance to query) the nearest point or Voronoi vertices is obtainable. 

The nearest point can be considered as the input query and the whole 

process of 1
st
 and 2

nd
 parts of the algorithm is repeated until required 

number of neighbors is achieved. Finally, to have more number of 

neighbors, the method can be repeated sequentially over the closer points to 

the query. This part of the algorithm has the same complexities of the two 

other sections as the whole process to find the preliminary query is repeated 

for the representatives of the query.  

 

Figure 4.implementation of HOVD 

In Figure 4 "o" is a vertex of Voronoi and a center point of circle event that 

is created by 𝑝1, 𝑝2 and 𝑝3. Based on algorithm the circle that encompasses 

the query, add 𝑝1, 𝑝2 and 𝑝3 points as neighbors of query to the neighbors' 

list. Here k is near to n, so by computing higher order of Voronoi, the circle 

will be bigger and bigger. Thus farther neighbors are added to query 

neighbors' list. 
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4.2 The complexity of HOV-kNN 

As mentioned before, HOV-kNN algorithm has a time complexity lesser 

than the time complexity of D.T. Lee’s algorithm. To show this fact, 

consider the presented algorithm in the previous section. Line 13 explains 

that the main body of algorithm must be repeated k times in which "k" are 

the number of neighbors that should be found. In each repetition one of the 

query’s neighbors are detected by algorithm and subsequently eliminated 

from dataset. The principle part of our algorithm that is the most time 

consuming part too is between lines 6 and 9. This line recalls modified 

Fortune algorithm which has a time complexity𝑂(𝑛𝑙𝑜𝑔𝑛). Therefore the 

overall complexity of our algorithm will be: 

 𝑂 𝑛𝑙𝑜𝑔𝑛 

𝑘

𝑖=1

= 𝑂 𝑛𝑙𝑜𝑔𝑛  1

𝑘

𝑖=0

= 𝑘𝑂 𝑛𝑙𝑜𝑔𝑛 = 𝑂 𝑘𝑛𝑙𝑜𝑔𝑛                 (2) 

In comparison to the algorithm introduced in [12] (which has a time 

complexity𝑂(𝑘2𝑛𝑙𝑜𝑔𝑛)) our algorithm is faster k times. The main reason of 

this difference is that Lee’s algorithm completely computes the HOVD, 

while ours exploits a fraction of HOVD construction process. In term of 

space complexity, the space complexity of our algorithm is the same as the 

space complexity of Fortune algorithm: 𝑂(𝑛).  

5. IMPLEMENTATION AND EVALUATION 

This section introduces the results of the HOV-kNN algorithm and 

compares the results with other algorithms. We use Voronoi diagram which 

is used to find k nearest neighbor points that is less complicated. The 

proposed algorithm was implemented using C++. For maintaining data 

points vector data structure, which is one of the C++ standard libraries, was 

used. The input data points used in the program test were adopted randomly. 

To reach preferred data distribution, not too close/far points, they were 

generated under specific conditions. For instance, for 100 input points, the 

point generation range is 0-100 and for 500 input points the range is 0-500. 

To ensure accuracy and validity of the output, a simple kNN algorithm was 

implemented and the outputs of the two algorithms were compared (equal 

input, equal query). Outputs evaluation was also carried out sequentially and 

the outputs were stored in two separate files. Afterward, to compare 

similarity rate, the two files were used as input to another program.  

The evaluation was also conducted in two steps. First the parameter “k” was 

taken as a constant and the evaluation was performed using different points 

of data as input. As pictured in Figure 5, accuracy of the algorithm is more 

than 90%. In this diagram, the number of inputs in dataset varies between 10 

and 100000. At the second step, the evaluation was conducted with different 

values of k, while the number of input data was stationary. Accuracy of the 

algorithm was obtained 74% while “k” was between 10 and 500 (Figure 6). 
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Figure 5. The accuracy of the algorithm for constant k and different points of data as input 

 

Figure 6. The accuracy of the algorithm for variable k and constant data as input 

 

6. CONCLUSION AND FUTURE WORK 

We have introduced a new algorithm (named HOV-kNN) with time 

complexity 𝑂(𝑘𝑛𝑙𝑜𝑔𝑛) and computing order k Voronoi diagram to find k 

nearest neighbor in a set of N points in Euclidean space. The new proposed 

algorithm finds k nearest neighbors in two stages: 1) during constructing the 

first order Voronoi diagram, some of the query neighbors can be obtained in 

complexity of the Fortune algorithm; 2) computing vertices of Voronoi 

sequentially. Because of eliminating pre-processing steps, this algorithm is 

significantly suitable for dynamic space in which data points are moving. 

The experiments are done in twofold: 1) constant number of data points 

while k is variable, and 2) variable number of data points while k is 

constant. The obtained results show that this algorithm has sufficient 

accuracy to be applied in real situation. In our future work we will try to 

give a parallel version of our algorithm in order to efficiently 

implementation a parallel machine to obtain more speed implementation. 

Such an algorithm will be appropriate when the numbers of input points are 

massive and probably distributed on a network of computers. 
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