
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 83

Software Architectural Pattern to

Improve the Performance and

Reliability of a Business Application

using the Model View Controller

G. Manjula

Assistant Professor,

Research Scholar, Dept. of Computer Science& Engineering

Shirdi Sai Engineering College, VTU. Bangalore, India.

Dr. G. Mahadevan

Principal, Annai College of Engineering, T.N.

 Guide, Dept. of Computer Science& Engineering

 Visvesvaraya Technological University, Belgaum, Karnataka, India.

ABSTRACT
In recent time, several new methods have been developed at a rapid pace. Some of the

advancements in continuous years, new methods have been developed at a rapid pace.

Some of the advancements in continuous optimization methods have been focused on

comparison and contrasting nature of Evolutionary Algorithms and Gradient based

methods. As a matter of fact, an Evolutionary algorithm is one of the best methods

available for derivative – free optimization on higher dimensional problems. This approach

will surely make difference in the existing system, whereas the measuring metrics software

platform varies in each application. Our approach applies to software architectures

modelled with the Palladio Component Model. It supports quantitative performance,

reliability, and cost prediction and can be extended to other quantitative quality criteria of

software architectures. By adding a new component model in between the each system is

more effective in measuring and easily suitable in any business application. In Software life

cycle, the two key activities involved are Requirements Engineering and software

architecting researchers are emphasing on mapping and transformation of requirements to

software architecture, but the lack of effective solution is still prevalent.

Keywords

Evolutionary Algorithm, PCM, Software Architecture, MVC.

1. INTRODUCTION

Palladio component model is a model which acts like Meta model for the

designed application, where we can measure the performance, cost and

reliability of a system .PCM is one of the high level design structure where

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 84

software process can interface with the frame work. The software process

for measuring the performance, reliability and cost we can use the software

MAT Lab. The mat lab is one of the tools we can implement in the business

application and measuring metrics. PCM can be used many ways.

Prediction methods for performance and reliability of general software

systems are still limited and rarely used in industry Component developers

who produce components that are assembled by software architects and

deployed by system allocators. The diverse information needed for the

prediction of extra-functional properties is thus spread among these

developer roles. PCM can also be used based on the different data set,

where the behavioral skills of a data are data integrity. The each behavior of

a data can be put into sequence diagram and traced out. But some of the

features are dependent then different methodology are used some of the

methodology are Parametric dependencies, Branch conditions, Loop

iterations, Parametric resource demand. Some properties of patterns for

software Architecture are.

1. The existing Patterns document is well structured and designed so that

based on the business application it makes easy to adopt practically.

2. Each pattern will be suitable for the application either it is complex or

easy, if it is so we can also make new pattern by using heterogeneous

software architectures.

3. Patterns are the best methodology to apply any business application to

measure the metrics of a system.

The following listing helps to classify the Palladio Component Model

(PCM) which is underlying the Palladio approach. In case you are preparing

taxonomy or try to identify whether specific features are supported by the

PCM, this page assists our work.

Supported quality dimensions

o Performance

o Reliability

o Costs

o Maintainability

 Requirements engineering and software architecting are two important

activities in software life cycle. Requirements engineering is concerned with

purposes and responsibilities of a system. It aims for a correct, consistent

and unambiguous requirements specification, which will become the

baseline for subsequent development, validation and system evolution. In

contrast, software architecting is concerned with the shape of the solution

space. It aims at making the architecture of a system explicit and provides a

blueprint for the succeeding development activities. It is obvious that there

exist quite different perspectives in user (or customer) requirements and

software architecture (SA).

http://www.palladio-simulator.com/science/palladio_component_model/
http://www.palladio-simulator.com/science/palladio_component_model/
http://www.palladio-simulator.com/science/palladio_component_model/

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 85

 In this method, the concept of using feature model for requirements

engineering was introduced. As a main activity in domain modeling, feature

analysis is intended to capture the end-user’s (and customer’s)

understanding of the general capabilities of applications in a domain

requirements engineering and software architecting

Some of the IEEE standards are

1. To solve a problem a constraint is needed so that achieving an

objective of a problem is considerable.

2. The constraint or condition must possess the quality of interaction

with the system component model to satisfy the standard

specification or other formally imposed document.

3. A document must reflect the above mentioned stages, and then we

can ensure that the architecture has achieved the objective of a

problem.

SA has become an important research field for software engineering

community. There exists a consensus that for any large software system,

critical situation a high level of computational elements are needed to

design. Because critical situation leads to complexity while other models are

process flow in the modified or newly added model controller Palladio

components [6] [7].

1.1 Method

The transformation rule is applied to the UML, where each state of a system

is ready to accept the query provided by the metrics system. The system will

also available in java JSP pages, but the retrieval operation from each page

will continuously affect the system. The process flow diagram mentioned in

the Palladio component model [11]. The context for the method consists of

a requirements specification that is taken as an input to the method and an

architectural design generated as output. User interface are prone to change

requests. An MVP is a basic platform to extend the performance of a

designed system called M-ACCURATE approach. This approach is newly

involved in the problem context while processing the sequence diagram. In

Sequence diagram each model behaviour can be measured and identification

of the weakness of data, to overcome we insert one more new model at the

initial stage called ACCURATE model. This way we can improve the

performance, cost and reliability of a system compared to the existing

methodology.

1.2 M-Accurate Approach

In this section we present the M-ACCURATE approach. The name M-

ACCURATE comes from an acronym for’ Model A Configurable Code

generator Unified with Requirements Analysis Techniques’. As it implies,

requirements play an important role in both PIM modelling and platform

decision. The key idea is to capture functional and non-functional

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 86

requirements into separate artifacts, a PIM and a platform configuration

respectively, and join them at the downstream of the development.

Implementation constructs UML models are meant for both logical analysis

and physical implementation. Certain constructs represent implementation

items. A component model is a basic or the initial level, replacement can be

done whenever the demand or the constraint is not fulfilling. In other words,

replaceable of a model can be done to improve the performance of a system.

It is intended to be easily substitutable for other components that meet the

same specification. A node is a run-time computing resource that defines a

location. It can hold components and objects. The deployment view

describes the configuration of nodes in a running system and the

arrangement of components and objects on them, including possible

migration of contents among nodes.

In Model organization, Computers can deal with large flat models, but

humans cannot. In a large system, the modelling information must be

divided into coherent pieces so that teams can work on different parts

concurrently. Even on a smaller system, human understanding requires the

organization of model content into packages of modest size. Packages are

general-purpose hierarchical organizational units of UML models. They can

be used for storage, access control, configuration management, and

constructing libraries that contain reusable model fragments. A dependency

between packages summarizes the dependencies among the package

contents. A dependency among packages can be imposed by the overall

system architecture. Then the contents of the packages must conform to the

package dependencies and to the imposed system architecture.

The model view controller relationship is the best architecture pattern for

the designed business application, but the behavior of a model in the OMT

diagram of an application is data dependent.to over come from this insert

one more new model called M-ACCURE model between the model view

controller.as figure 1 shows the interface between mode and view model,

the Controller is at the backend of the system, because the controller is

coordinating all the models.

1.2.1 model

The model component encapsulates core data functionality. The model is

independent of specific output representation or input behavior. When the

figure 3 is designed there are basically six models which are designed. They

are Model, view, controller, concrete model, concrete view and concrete

controller. Each model inherits the sub model called CONCRETE which

can be taken as presenter in the figure 1.The technic behind this is the each

sub model will be treated as the ACCURATE model such that we can

improve the performance, cost and reliability of a system.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 87

1.2.2 View

View components display information to the user. A view obtains the data

from the model. There can be multiple views of the model. Different views

present the information of the model in different ways. Each view defines

an update procedure that is activated by the change propagation mechanism.

View model inherited CONCRETE view model in figure3 which updates

the data information between model and controller.

2.2.3 Presenter

The concept represented by bottom-level approach represented by pie charts

in application result. Here the result will be simulated output. Presentation

model fulfill two different roles Composition and Coordination. Presenter

model always defines a structure for interactive systems in the form of a

hierarchy of other cooperating models such as Model and view, but in this

approach there are two new sub models are also added to overcome with the

communication failure. The communication between human and computer

will always taking care by the presenter model.

2. SEQUENCE DIAGRAM

The following scenarios depict the dynamic behavior of MVC. For

simplicity only one view-controller pair is shown in the diagram.

1. The model instance is created, which then initializes its internal data

structures.

2. A view object is created .This takes a reference to the model as a

parameter for its initialization.

3. The view subscribes to the change –propagation mechanism of the model

by calling the attach procedure. The mechanism is presentation model

where it inherits the CONCRETE-model, view and controller.

4. The concrete models continue initialization by creating its controller. It

passes references both to the model and view.

5. After initialization in each model, the application begins to process

events.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 88

3.

Figure 2. A typical sequence flow diagram

3. IMPLEMENTATION SCENARIO-BASED EVALUATION

It should be noted that it is necessary to use a different scenario set for

evaluation than for architecture design. The set used for design is generally

supported by the architecture. However, while developing the scenarios, it is

not necessary to develop two sets. The two sets could be generated later by

randomly dividing the developed set of scenarios. Figure 3 shows a typical

Object Management Group (OMG) diagram with asynchronous messages In

addition, depending on the system, it might be necessary to develop new

scenarios for evaluation purposes if the design is iterated a number of times.

In our experience, scenario-based assessment is particularly useful for

development Maintainability can be expressed very naturally through

change scenarios.

Main Program

Model, Concrete

Model

View, Concrete

View

Model

Controller

View

Controller,

Concrete,

Concrete

Model, View

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 89

4. SIMULATION RESULT

The result of a simulation run contains response time distributions of each

executed service. The simulation resolves resource contentions for the

service centers either by a FIFO or processor sharing scheduling policy.

Further scheduling policies including more realistic schedulers of today’s

operation systems and multi-core handling will be implemented in the

future. The simulation can therefore predict the performance for more

complex scenarios than the analytical solver finally; the real system

implemented using the code skeletons.

The simulation result will reflect the modification in the measurements

taken in the existing model states as each modified or added new model

controller will automatically reflect the result and its merits and demerits are

better than the existing output [12]. Offers the real performance - no

modeling is necessary here. However, in addition to the effort already

needed for the prototype to setup and measure the performance figures, the

time to implement the system has to be added. This approach of gaining

performance values is only applicable in late life-cycles of the software

system. When performance problems are discovered after the system has

been implemented, a redesign and reimplementation are costly the main

components of the architecture are implemented and other components are

simulated resulting in an executable system. The context, in which the

system is supposed to execute in, could also be simulated at a suitable

abstraction level. This implementation can then be used for simulating

application behaviour under various circumstances.

Figure 3. OMG Diagram

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 90

//code segment highlighted here....
//MODEL main

main(){
Table View *v1=new tableView(&m);

public abstract class Model

 v1->initialize();
BarChartView *v2=new BarChartVeiw(&m);

 V2->initialize();

//now start event processing...
Class Model{

//...continued

 public:
 void attach(concretemodel *cm){ registry.add(s);}

 void detach(concretemodel *cm){ registre.remove(s);}

 protected:
 virtual void notify();

 private:

 Set<Observer*>registry;
};

//model view
 class view :public Observer{

public:

 veiw(model *m):M1model(M1),M1Controller(0)
 {M1model->attach(this);}

 virtual ~View(){M1model->detach(this);}

 virtual void update(){this->draw();}

virtual void initialize();

virtual void draw();

//... to be continued below
//model controlller

 class Controller:public Observer {

 public:
 virtual void ConcreteEvent(Event *){ }

 Controller(veiw *v):V1view){

 M1model=M1view->getModel();

 M1model=attach(this);

}
Virtual ~controller(){M1model->detach(this);}

Virtual void update{}

 protected:
 Model *M1model;

 Veiwn *M1view;

};

 class tableveiw:public veiw{

public:
 Tableveiw{model * M1): veiw(M1) { }

 virtual void draw();
 virtual Controller *M1Controller()

 {return new TableController(this);}

};

5. LIMITATIONS AND FUTURE WORK

The following three limitations will surely improve the software

architecture pattern metrics, the business application methodology will

always replica manner which in turn affect the limitations. Questionable

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 91

efficiency: As the evaluation of each candidate solution, mainly due to the

performance evaluation, takes several seconds, the overall approach is

considerably time consuming. Here, software architects should run it in

Parallel to other activities or overnight. A distribution of the analyses on a

cluster of workstations could lead to significant improvements. It could also

be possible to split the optimization problem into several independent parts

that are solved separately and thus quicker.

Limited degrees of freedom: Currently, design options that over new

degrees of freedom are not yet considered. For example, adding a new

server results in further options to configure that server. Such de-sign

options could be integrated by formulating the genotype as a tree structure

rather than a vector. Simplistic cost model: The cost model used here is

simplistic, as we only wanted to demonstrate the approach. We do not want

to devise a new cost estimation technique. However, more sophisticated

cost estimations techniques.

An architecture design method has been presented that explicitly addresses

the non-functional requirements put on the architecture. The simulated

output will always measure the metrics of the business application. The new

model which is inserted in between the existing model will prove that the

quality of the metrics is improved. It has been identified that the ability of a

system to fulfill its non-functional requirements is, up to a considerable

extent, restricted by its architecture. The proposed method starts with a

functionality-based design phase in which a software architecture is

designed purely based on the functional requirements. The architectural

design method has been applied, in some form, in the design of systems,

Experience shows that the method is provide appreciated support to the

software engineers during architectural design.

6. CONCLUSION

An architecture design method has been presented that explicitly addresses

the non-functional requirements put on the architecture. The simulated

output will always measure the metrics of the business application. The new

model which is inserted in between the existing model will prove that the

quality of the metrics is improved. It has been identified that the ability of a

system to fulfill its non-functional requirements is, up to a considerable

extent, restricted by its architecture. The proposed method starts with a

functionality-based design phase in which a software architecture is

designed purely based on the functional requirements. The architectural

design method has been applied, in some form, in the design of systems,

Experience shows that the method is provide appreciated support to the

software engineers during architectural design.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 92

7. REFERENCES
[1]Eclipse.org. ATLAS Transformation Language (ATL). http://www.eclipse.org/m2m/atl/.

[2]A. Billig, S. Busse, A. Leicher, and J. G. Süss. Platform Independent Model

Transformation Based on TRIPLE. In Middleware’04: Proceedings of the 5th

ACM/IFIP/USENIX International Conference on Middleware, pp. 493–511, 2004.

[2A] D. Ayed and Y. Berbers. UML Profile for the Design of Platform-Independent

Context-Aware Applications. In MODDM’06: Proceedings of the 1st Workshop on Model

Driven Development for Middleware, pp. 1–5, 2006.

[3] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification

Version 1.0. ttp://www.omg.org/docs/formal/08-04-03.pdf, 2008.

[4] S. Link, T. Schuster, P. Hoyer, and S. Abeck. Focusing Graphical User Interfaces in

Model-Driven Software Development. In ACHI’08: Proceedings of the 1
st
 International

Conference on Advances in Computer-Human Interaction, pp. 3–8, 2008.

[5] D. Habich, S. Richly, and W. Lehner. ignoMDA: Exploiting Cross-layer Optimization

for Complex Database Applications. In VLDB’06: Proceedings of the 32
nd

 International

Conference on Very Large Data Bases, pp. 1251–1254, 2006.

[6] C. He, F. He, K. He and W. Tu. Constructing Platform Independent Models of Web

Application. In SOSE’05: Proceedings of the 2005 IEEE International Workshop on

Service-Oriented System Engineering, pp. 85–92, 2005

[6A] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented

Software Architecture: A System of Patterns. John Wiley & Sons, Inc., 1996.

[7] D. Ayed and Y. Berbers. UML Profile for the Design of Platform-Independent Context-

Aware Applications. In MODDM’06: Proceedings of the 1st Workshop on Model Driven

Development for Middleware, pp. 1–5, 2006.

[8] M. López-Sanz, C. Acuña, C. Cuesta, and E. Marcos. UML Profile for the Platform

Independent Modeling of Service-Oriented Architectures. Software Architecture, pp. 304–

307, 2007.

[8A] eclipse.org. Model to Model (M2M) Project.http://www.eclipse.org/m2m/.

[9] T. Fink, M. Koch, and K. Pauls. An MDA approach to Access Control Specifications

Using MOF and UML Profiles. Electronic Notes in Theoretical Computer Science,

142:161–179, 2006.

[10] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. Applying MDA approach for

Web service platform. In EDOC’04: Proceedings of the 8th IEEE International Enterprise

Distributed Object computing Conference, pp. 58–70, 2004.

[11] M.Rahmouni and S. Mbarki. International Journal of Computer Science & information

Technology. Vol 3, No 4, August 2011.

http://www.eclipse.org/m2m/atl/

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

 ISSN: 1694-2108 | Vol. 10, No. 1. FEBRUARY 2014 93

[12] L. DOBRICĂ, A. D. IONIŢĂ, R. PIETRARU, A. OLTEANU. U. P. B. Automatic

Transformation of Software Architecture Models, Sci. Bull., Series C, Vol. 73, Iss. 3,

2011.

This paper may be cited as:

Manjula, G. and Mahadevan, G., 2014. Software Architectural Pattern to

improve the Performance and Reliability of a Business Application using

Model View Controller. International Journal of Computer Science and

Business Informatics, Vol. 10, No. 1, pp. 83-93.

