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ABSTRACT 
Among all patterns occurring in tree database, mining frequent tree is of great importance. 

The frequent tree is the one that occur frequently in the tree database. Frequent subtrees not 

only are important themselves but are applicable in other tasks, such as tree clustering, 

classification, bioinformatics, etc. In this paper, after reviewing different methods of 

searching for frequent subtrees, a new method based on inverted index is proposed to 

explore the frequent tree patterns. This procedure is done in two phases: passive and active. 

In the passive phase, we find subtrees on the dataset, and then they are converted to strings 

and will be stored in the inverted index. In the active phase easily, we derive the desired 

frequent subtrees by the inverted index. The proposed approach is trying to take advantage 

of times when the CPU is idle so that the CPU utilization is at its highest in in evaluation 

results. In the active phase, frequent subtrees mining is performed using inverted index 

rather than be done directly onto dataset, as a result, the desired frequent subtrees are found 

in the fastest possible time. One of the other features of the proposed method is that, unlike 

previous methods by adding a tree to the dataset is not necessary to repeat the previous 

steps again. In other words, this method has a high performance on dynamic trees. In 

addition, the proposed method is capable of interacting with the user. 
 

Keywords: Tree Mining, Inverted Index, Frequent pattern mining, tree patterns. 

 

1. INTRODUCTION 

Data mining or knowledge discovery deals with finding interesting patterns 

or information that is hidden in large datasets. Recently, researchers have 

started proposing techniques for analyzing structured and semi-structured 

datasets. Such datasets can often be represented as graphs or trees. This has 

led to the development of numerous graph mining and tree mining 

algorithms in the literature. In this article we present an efficient algorithm 

for mining trees. 
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 Data mining has evolved from association rule mining, sequence mining, to 

tree mining and graph mining. Association rule mining and sequence mining 

are one-dimensional structure mining, and tree mining and graph mining are 

two-dimensional or higher structure mining. The applications of tree mining 

arise from Web usage mining, mining semi-structured data, and 

bioinformatics, etc. 

Basic and fundamental ideas of tree mining, roughly since the early '90s 

were seriously discussed and during this decade were completed. These can 

be stated that the origin and beginning of these ideas is their application 

especially on the web. First, some essential and basic concepts are 

described, and then describe the proposed method and finally the results will 

be evaluated. 

2. Related Works 

2.1 Pre Order Tree Traversal 

There are several ways to navigate through the ordered trees; pre order 

traversal is one of the most important and most widely used of them. In this 

way, we are acting like Depth First Search algorithm. This means that on the 

tree like T starting from the root, then the left child and finally the right 

child is navigating; this method is done recursively on all nodes of the tree. 

2.2 Post Order Tree Traversal 

It is also among the most important and widely used methods of ordered 

trees traversal. In this method, we first on the tree like T starting from the 

left child, then right child and finally the root is navigating, the operation is 

performed recursively on all nodes of the tree. 

Using either method, the above display, we can assign a number to each of 

the nodes that in fact, it is represents a time to meet each node. If we use the 

Post Order Traversal, that number is called PON. 

2.3 RMP, LMP 

LMP is the acronym Left Most Path represents a path from the root to the 

leftmost leaf and the RMP is the acronym Right Most Path represents a path 

from the root to the rightmost leaf. 

2.4 Prüfer Sequence [23] 

This algorithm was introduced in 1918 and used to convert the tree to string. 

The algorithm works as follows in the tree like T, in every step the node 

with the smallest label has been removed and label the parent node of this 

tree is added to the Prüfer Sequence. This process is repeated n-2 times to 2 

nodes remain. 
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2.5 Label Sequence 

The next concept is Label Sequence. This sequence is produced according to 

the Post Order Traversal. In other words, in the Post Order Traversal, label 

of each node that will be scanned, add to the sequence. 

2.6 Support 

Simply this implies that the S pattern has been repeated several times in the 

tree T. 

 

(1)  

  

Where S is a tree pattern and D is a database of trees. This concept for 

determining the number of occurrences of each subtree in a set of trees is 

being used. 

2.7 Inverted Index [24] 

Inverted Index is a structure that used to indexing frequent string elements 

in set of documents and is consists of two main parts: Dictionary and 

Posting List. Frequent string elements uniquely stored in Dictionary and the 

number of occurrences of each of these elements in total documents is 

determined. Informations about the frequent elements such as the document 

name, number of occurrences in each document are determined in Posting 

List. 

3. An overview of research history 

In recent years, much research about the frequent subtrees mining has been 

done. Yongqiao Xiao et al in 2003 used the Path Join Algorithm and a 

compact data structure, called FST-Forest to find frequent subtrees [25]. In 

this way, we first find frequent root path in all directions and then with 

integrate these paths, frequent subtrees are reached. Shirish Tatikonda et al 

published an article in 2006 on the basis of the pattern growth[26]; In this 

way that all trees in the database tree are converted to strings, that is done 

with the two different methods: Prüfer Sequence and DFS algorithms; then 

scroll all strings in which there is a subtree or pattern such as S, we are 

seeking a new edge can be added to S. Then, concurrently with the previous 

step, as production of the candidate subtrees, the threshold values are 

evaluated for be frequent. In 2009, Federico Del Razo Lopez et al presented 

an idea to make flexible the tightly constrained tree mining In non-

fuzzy[27]. This paper used the principle of Partial Inclusion; that to say that 

there is a pattern S in a tree T, it is no need to exist all the pattern nodes in 

the tree. The proposed algorithm uses Apriori property for pruning 

undesirable patterns.  
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4. The proposed approach 

This procedure is done in two phases: Passive and Active. In the Passive 

phase, first we need to find all subtrees available in all trees and then must 

be store in Inverted Index. In the Active phase, simply use it and will extract 

frequent tree patterns. 

4.1 Passive Phase 

This phase is done in two stages, in first stage; we must find all subtrees of 

every tree in dataset then they will be converted to a string called that tree 

and in second stage; produced strings in the first stage should be stored in 

the Inverted Index. 

4.1.1 First stage of Passive phase 

The first important point is that in each tree, each node label in the tree can 

be repeated many times, but every node in every tree has a unique label; to 

solve this problem, we use the method of Prüfer Sequence. This means that 

each tree can be traced to Post Order and In fact, Prüfer Sequence Algorithm 

works based on the PON. As a result, each node label of a tree will be 

marked with a unique number. 

The next issue is that the Prüfer Sequence able to cover all the nodes, 

therefore, the algorithm implementation process rather than n-2 steps 

process will continue until n steps and rather than the parent label of the last 

node, put the number 0. In Figure 1 you can see an example of this method 

is that the purpose of the NPS is Prüfer Sequence that has been achieved 

using Post Order. 

The next thing is that every subtree should be displayed uniquely; to this 

end, must obtain CPS for each node. In fact, CPS will merge Prüfer 

Sequence and Label Sequence. In other words, CPS(T) = ( NPS,LS )(T). 

CPS can uniquely display a rooted and labeled tree. As you can see in 

Figure 1, the T1 tree can be displayed uniquely using two strands that are 

complementary. 

 

 

Figure 1. An example of the Prüfer Sequence and Label Sequence for T1 tree 
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The next thing that we need to ensure that in each tree can produce all 

subtrees and each subtree is created only once, for this purpose, we use the 

LMP to generate the subtree. This means that if we show the T tree using 

Prüfer sequence and n is the subtree, A node such as v that is to be added to 

the n should be included in the LMP of the T tree and since the PON is built 

on the Prüfer sequence, just the v node should be after the last node of the n 

and attached to that in the Prüfer sequence of the T tree. So is guaranteed to 

be generated only once for each subtree and if it is done for all the nodes, 

entire subtree of each tree will produce. 

Now we will introduce the algorithm. The proposed algorithms for 

generating subtrees and convert them into a string can be seen in Figure 2. 

Insert CPS(T) in Array  A 

For i=n downto 1 do 

{ 

   Subtree=A[n] 

   Insert CPS(A[n]) in Treestringi 

   Sub(subtree,i,A, stack1,stack2) 

} 

  

Sub(subtree,index,A[],stack1,stack2) 

c=0 

t=0 

For j= 1 to index-1 do 

If index in A[j] then 

{ 

     stack3=stack1 

     stack4=stack2 

     subtree2=subree 

     while stack3 not empty 

    { 

           t++ 

           Pop x from stack1 

           Pull y from stack2 

           Subtree2=subtree2+x 

           if t>0 then 

          { 

           Insert CPS(subtree2) in treestringi 

           Sub(subtree2,y, A[],stack3,stack4) 

          } 

    } 

     If c>0 then 

     { 

     Temptree push in stack1 

     TempIndex push in stack2  

     } 

     Temptree= a[j] 

     TempIndex=j 

     c++ 

     Subtree=subtree+a[j] 
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     Insert CPS(subtree) in treestringi 

     Sub(subtree,j,A[],stack1,stack2) 

     while stack1 not empty 

    { 

           c-- 

           Pull x from stack1 

           Pull y from stack2 

           Insert CPS(subtree+x) in treestringi 

           Sub(subtree+x,y, A[],stack1,stack2) 

    } 
} 

Figure 2. The algorithm of the subtrees generation and convert them to a string 

In the following we examined the algorithm works with an example. In the 

beginning starting from the first tree and CPS (T) are stored in the array A. 

As a result, the array will be completed for T1 according to Figure 3. 

 
Figure 3. Production of the array using CPS (T) 

In this step we identify all existing subtrees and store them in a string. To do 

this, we start from the root node of T1, therefore the last element of the 

array namely A0 and respectively, the branching subtrees from this node 

should be stored in the string. As a result, at first A0 is stored in the string 

according to the algorithm, next we run sub function. Considering that the 

index of previous node is equal to 9 to find the subtrees with two nodes, 

respectively start from the first element of the array and review to the 

element with the pre Index of the previous node namely 8, If the value 

contains the index of the previous node namely 9, It has added to the 

previous tree namely A and CPS of the found subtree can be inserted in the 

string of this tree that here A0C2 and A0E2 are stored in the string and 

recursively repeat the same steps for new generated subtrees. Given that 

both produced subtrees branched from a node, adding node with smaller 

index from Stack1 and its index from stack2 are extracted and added to the 

subtree with a larger index and its CPS is stored in the string,therefore in 

this step is also added A0E3C3 and also this is repeated for the whole 

produced subtrees with larger index in the next step. Similarly, the work 

continues recursively until all subtrees branching from the first node of the 

array to be stored in string. Then do the same procedure for the next 

elements of the array, until complete the string of the subtrees of the tree 

and then we proceed next trees until for each tree, the string is created for all 

subtrees of the tree. 
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4.1.2 First stage of Passive phase 

In the second stage of this phase we use the Inverted Index. Thus, the strings 

created in the previous stage are inserted into the Inverted Index. CPS and 

the number of occurrences of each subtree in the all trees are stored in the 

Dictionary and the name of the trees that are containing the subtree will be 

stored in the corresponding Posting List. 

 

Figure 4. Part of the Inverted Index made for the collection of trees T1, T2 

As can be seen in the subtrees are stored in the Dictionary and the parent 

trees of the corresponding subtrees are stored in the Posting List. 

4.2 Active Phase 

In this phase, simply use inverted index made in the previous phase and will 

extract frequent tree patterns. Simply types of queries about frequent subtree 

mining to be answered quickly by using inverted index made in the previous 

phase. Then we will examine several types of different queries.  

4.2.1 Find the occurrence of the desired pattern in tree set 

First, we are achieved CPS of the desired pattern and then search it into 

Dictionary of the inverted index and easily extract the number of the 

occurrence and name of trees that contain the desired pattern from the 

Posting List of the inverted index. For example, to find the number of 

occurrences of the S pattern on the collection of trees T1, T2 in Figure 5, 

should search CPS (S) ie A0C3B3 into Inverted Index that T1 and T2 will 

be the result. 
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Figure 5. Part of the Inverted Index made for the collection of trees T1, T2 

4.2.2 Find frequent subtrees in considering the Support 

If we want to find some subtrees that them Support are greater than a 

threshold, must find the subtrees with their occurrence compared to the total 

trees is greater than the Support. So we can search in the inverted index and 

easily find subtrees that the length of them Posting List compared to the 

total trees is at least equal to Support. 

4.2.3 Find frequent subtrees in considering the Support and minimum nodes 

In this case, in addition to Support, the number of nodes is also the criterion, 

so easily search in Inverted Index and only show the subtrees with the 

following conditions. First, in Dictionary Length the subtree is greater than 

the minimum number of nodes and Second, length of corresponding Posting 

List compared to the total trees is at least equal to Support. 

5. Evaluation 

In this section, the proposed method will be evaluated from various aspects. 

We present the experimental evaluation of the proposed approach on 

synthetic datasets. In the following discussion, dataset sizes are expressed in 

terms of number of trees. In the graphs is used from symbolizes Algorithm 

to display proposed method. Name and details of synthetic datasets are 

shown in Table 1. 

Table 1. Name and details of synthetic datasets 

Name Description 

DS1 -T 10 -V 100 

DS2 -T 10 -V 50 

 

As shown in Table 1, the synthetic datasets DS1 and DS2 are generated 

using the PAFI[28] toolkit developed by Kuramochi and Karypis (PafiGen). 

Since PafiGen can create only graphs we have extracted spanning trees from 

these graphs and used in our analysis. We also used minsup to analyze the 

various factors. This means if the number of replicated subtree is less than 

minsup value, the tree won't be indexed in Inverted Index. Minsup value is 

from 1 to infinity, which is the default value is equal to 1 in the proposed 

algorithm. In addition, we also use from maxnode in evaluations. Maxnode 

is the symbol to specify the maximum number of nodes in each subtree in 

Inverted Index. This means if the number of subtree nodes reach maxnode 

amount in the proposed algorithm, production of its subtree will halt. 
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Maxnode value is from 1 to infinity, and the default value is equal to 

infinity. 

5.1 Evaluating the performance of the proposed method 

At the beginning, we evaluated our proposed algorithm on two synthetic 

datasets DS1 and DS2. The performance of the proposed algorithm for 

frequent tree minig on synthetic datasets is shown in Diagram 1. In this 

experiment, the minsup equal to one and the maxnode is equal to infinity. 

Given that the Subtrees are indexed in passive phase at times when the 

system is idle, mining time in Inverted Index rises with a gentle slope  By 

increasing the number of trees. So clearly spelled out the introduced 

algorithm is scalable. 

 

Diagram 1: The performance of the algorithm on synthetic datasets 
 

5.2 Evaluating effect of minsup on the number of indexed patterns  

We examine effect of minsup on the number of indexed patterns in Diagram 

2. This experiment has been done on synthetic datasets DS1 and DS2 

generated by Pafi and with size 50K. In this experiment the maxnode is the 

default value ie infinity. As can be seen in the diagram, the number of 

indexed patterns is increasing exponentially by decreasing minsup. 

 

Diagram 2: Effect of minsup on the number of indexed patterns 
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5.3 Evaluating effect of maxnode on usage memory 

We examine the effect the maximum number of nodes in the indexed 

subtrees on usage memory in passive phase. This experiment has been done 

on synthetic datasets DS1 and DS2 generated by Pafi and with size 50K. In 

this experiment the minsup is the default value ie 1. As can be seen, the 

usage memory of the algorithm is increasing by increasing the number of 

indexed nodes in each subtree. 

 

Diagram 3: Effect of maxnode on the usage memory 
 

5.4 Evaluation of CPU utilization compared with the Tree Miner 

In diagram 4, the comparison is performed between the proposed algorithm 

with Tree Miner that was introduced by Zaki and is one of the best 

algorithms for tree mining[29]. This experiment has been done on synthetic 

dataset DS1 generated by Pafi and with size 50K. Given that in passive 

phase the proposed algorithm is searching for subtrees and adding them to 

inverted index, consequently, as can be seen in the diagram, CPU utilization 

is close to 100 percent in most situations while the average CPU utilization 

on TreeMining algorithm is approximately 90%. 
 

 

Diagram 4: Comparison CPU utilization between TreeMiner and the algorithm 
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6. Conclusions and Recommendations 

In this paper, a new method based on the Inverted Index in order to frequent 

pattern mining was introduced to overcome many of the disadvantages of 

previous methods. One problem with existing approaches is that mainly act 

as a static on the set of trees and if a new tree is added to the set of trees, all 

mining operations must be done from scratch again. This problem has been 

overcome by the Inverted Index in the proposed approach. This means that 

all the trees are indexing in the Passive phase and if a new tree is added to 

the treeset at any stage, just the tree is indexed and there is no need to repeat 

the previous operations. This algorithm will result in a high performance on 

a collection of dynamic trees. Another advantage of this method compared 

to other methods is that it is scalable. As listed in Section 5.1, the 

performance of this algorithm is not slowed by increasing the treeset. As 

listed in Section 5.4, one of the most striking features of this algorithm is 

efficient use of CPU. In this method, the user interaction is also present.  

As Listed in Section 5.2, the number of indexed patterns increases 

exponentially by decreasing minsup, while the generally patterns with low 

occurrences doesn't matter to us. As a result, we can speed up indexing in 

passive phase with determining the appropriate amount of the minsup. As 

Listed in Section 5.3, the usage memory increases by increasing the 

maximum number of nodes in the indexed subtrees, while the usually 

subtrees with very large number of nodes doesn't matter to us. As a result, 

we can manage the usage memory with determining the appropriate amount 

of the maxnode. 
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