
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 104

Design and Analysis of Concurrency

Control Mechanism Using Modified

SCC-2S Algorithm in Mobile Environment

Nyo Nyo Yee
Faculty of Information and Communication Technology,

University of Technology (Yatanarpon Cyber City)

Pyin Oo Lwin Township, Mandalay Division, Myanmar

Hninn Aye Thant
Faculty of Information and Communication Technology,

University of Technology (Yatanarpon Cyber City)

Pyin Oo Lwin Township, Mandalay Division, Myanmar

ABSTRACT
With the fast progress in mobile computing technology, there is growing strongly request

for processing real-time transaction in a mobile environment. In real-time database use in

mobile environments, mobile hosts (mobile users; mobile clients) can access shared data

without regard to their physical location and can be updated by each mobile client

independently at the same time. These conditions go to inconsistency of data. Real-time

database system use in mobile environments, provide consistency of data items is a

challenging issue in case of concurrent access. There are several concurrency control

techniques that are proposed in literature to prevent data inconsistency. General

characteristics of mobile environments like mobility, low bandwidth, limited battery power,

limited storage, frequent disconnections etc. makes concurrency control more difficult. This

paper proposed a method that based on Modified SCC-2S Algorithm in JEE architecture.

Proposed method Concurrency Control Mechanism using Modified SCC-2S Algorithm

solves write-write conflict for real-time database in mobile environment. In proposed

system, Fixed Host (FH) has Database System module to perform database operation.

Mobile Hosts (MHs) use On-Demand Mode to request data from FH. Therefore, MH can

save storage and can live as thin client. Moreover, proposed method does not need

compensating transaction for roll back transaction and can reduce memory usage in FH.

Besides, proposed method can reduce the number of miss deadlines and improve

effectiveness for concurrent transactions in mobile environment.

Keywords

concurrency control, modified SCC-2S Algorithm, fixed host, mobile host, mobile

environment

1. INTRODUCTION

In today’s Information Epoch, database is essential component of any

Information system and in any environment either it is traditional,

distributed, centralized, real-time or mobile. Database is a structured way to

organize information. To manage the database, there are several methods for

accessing the database in any system. Among them, centralized databases

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 105

are persistent but are inadequate of processing with dynamic data that

constantly changes [6].

Real-time Database System (RTDBS) derived from traditional database

systems and provide the same capabilities, but they are defined by timing

constraints associated with the transactions of the data. Since the data is

associated with a period of time for which the data is valid and can be

considered to represent the true state of the system at a given time [2].

Moreover, real-time database system is processing system that is designed

to manage workloads whose state is constantly changing and to stop trying

reliable responses [6]. RTDBS must process transactions and guarantee

database consistency [2].

There are two kinds of transactions in database management system.

They are read-only transactions (ROTs) and update transactions (UTs).

These transactions can have four ACID properties. These properties are

Atomicity, Consistency (Concurrency), Isolation (Independence) and

Durability (or Permanency) [1]. An update transaction (UT) is a transaction

which can perform both read and write operations on database. An ROT is a

transaction that contains only read operations which do not modify data. If

an ROT conflicts with a UT, the processing of ROT is delayed till the

corresponding UT terminates. Also, if a UT conflicts with an ROT, the

processing of UT is delayed till ROT gets the access to the objects. Also, if

a UT conflicts with another UT, the processing of UT is delayed till another

UT gets the access to the objects. As a result, the throughput performance

(number of transactions processed per second) deteriorates as data

contention increases [1].

Real-time Database System (RTDBS) used in Mobile Environment

provide information to Mobile Host (Mobile User). In mobile environment,

Mobile Users (Mobile Host) can initiate transactions and that transactions

may be executed at Mobile User (MU) or Fixed Host (FH). Most of the

transactions used in mobile environment are flat transactions. In modern

world, most applications are complex and long-running and flat transactions

could not work properly in these applications. Moreover, flat transactions

can perform only commit or rollback and cannot save intermediate results. If

transactions were rollback, the whole transaction will be restarted. To solve

this problem, proposed method (Concurrency Control Mechanism Using

Modified SCC-2S Algorithm) based on closed-nested transactions model

because nested transactions are suited for complex application and can save

intermediate result. Nowadays, Airline Businesses are very popular and

most of the users want to access this information from mobile environment.

To reach the desire destination, most of the airlines use transit. So, there is

an issue to control concurrent access in Airline Reservation System.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 106

Proposed method aims for controlling concurrent access in airline

reservation system.

The rest of this paper is organized as follows: Section 2 present

proposed method. Section 3 provides general rules for proposed method and

mathematical expression for proposed method. Section 4, analyses proposed

method and other concurrency control algorithms and section 5 draws the

conclusion.

2. PROPOSED METHOD

In proposed system, mobile user sends query using an uplink channel

(pull process). To process the request, database server (including two

databases) in Fixed Host (FH) use proposed method Concurrency Control

Mechanism using Modified SCC-2S Algorithm that avoids conflict (access

the same data). After the database operation had performed, FH returns the

result back to corresponding MH. MH does not require having Database

System (DBMS) module to perform database operations. So, MH acts as a

thin client.

If two or more transactions enter the system concurrently, the system uses

Concurrency Control Mechanism using Modified SCC-2S Algorithm to

control concurrent access. Proposed system compared proposed method

with Two-shadow Speculative Concurrency Control (SCC-2S). SCC-2S

require standby shadow if conflicts occur between transactions. In SCC-2S,

transaction with late time creates standby shadow. Standby shadow means

the copy of the original query that does not contain the portion of the query

that the primary shadow is already performed. Standby shadow creations

require extra processing power and resources. It is not suitable for mobile

environment either concurrency control is performed MHs or FH. Because

MHs has limited storage, concurrency control is performed in MH is not

suitable using SCC-2S. Similarly, concurrency control is performed in FH is

not suitable because SCC-2S requires a lot of resource to consume so FH

can become bottleneck when a lot of concurrent update occurs.

By using Modified SCC-2S Algorithm; it does not to require creating

standby shadow. Hibernate is free open source software of the Object-

Relational mapping (O/R mapping) tool for the Java language developed by

Red Hat. O/R mapping is a programming technique for associating data

between data type in Relational Databases and Object-Oriented

programming languages. In Object-Oriented programming, data model is

designed and implemented to manipulate objects, while Relational databases

are structured for retrieving and saving data. The problem resides in how to

convert the object values into database (and convert them back upon

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 107

retrieval) in spite of the difference of the principal and philosophical design.

The purpose of O/R mapping is to solve the Object-Relational impedance

mismatch issue and provides the seamless conversion between them

reducing the typical and complicated work from developers. It can be used

in matching with Struts, Spring, and Hibernate JEE (Java Enterprise

Edition) framework. The work of the Synchronizer is to synchronize

between threads. Transactions from mobile host enter the system as a

thread. In JEE, synchronize method can be used to control the work of

threads.

There are many kinds of lock used in database management system. They

are database level, table level, page level, row level or field (attribute) level

[4]. Proposed method performs concurrency control in row level. So,

proposed system use row level lock. So, proposed method not need to lock

database, table and page level. So, many transactions can perform database

operation concurrently. In proposed method, transaction with late times

block if conflict occurs between transactions. It cannot require creating save

point and log files. Database server can perform this work automatically and

can save intermediate result. If commit transaction release lock, it resumes

its execution form the point that conflict occurs.

Illustration of SCC-2S works is , shown in “Fig. 1”, Two mobile hosts

MH1 and MH2 access the same data item x. MH1 execute Transaction T1 to

write data item x. MH2 execute Transaction T2 to read data item x. Both

transactions T1 and T2 start with one primary shadow, namely T1
0
 and T2

0

respectively. When T2
0
 try to read object x, a potential conflict is

discovered. At that time, a standby shadow, T2
1
, is created (means the

transaction T2
0
 is blocked when transaction T1

0
 release its lock). If T1

0

successfully validates and commits on behalf of transaction T1, the standby

shadow T2
1
 resumes its execution [5].

T1
0

T2
0

T2
1

s

s

Rx

Wx

Rx

V/C

V/C

S: Begin Transaction

WX: Write on object x

V/C:Valid and Commit

A

A:Abort

Blocked

RX: Read on object x

T2

Deadline

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 108

 Fig. 1 Schedule with a standby shadow promotion for Read-Write conflict for SCC-2S

SCC-2S cannot solve Write-Write conflicts and it only solves Read-Write

conflicts. In real world, read transactions is low priority than write (update)

transactions. In SCC-2S, read transactions always create standby shadow.

On the other hand, if transaction T2 reaches before transaction T1,

transaction T2 reads operation cannot conflict with transaction T1 write

operation. So, transaction T2 read data item x. But when transaction T1 write

data item x, at that time the result for transaction T2 is wrong. At that time,

transaction T2 must create standby shadow for read data item x. When

transaction T1 commits, primary shadow for transaction T2 is abort and

standby shadow promote to become primary shadow and execution is

resumed. So, transaction T2 read the data item x two times and always check

conflict with other transaction or not. Moreover, if many transaction

conflicts with other transaction, there are many standby shadow creation and

abortion. This leads to resource consumption. It can become more negative

effect when write-write conflict occurs. The abortion for write transaction

has more effect than read transaction. Really, most of the transactions used

in Real-time Database System are update (write) transactions. Moreover,

due to the characteristics of mobile environment the effects of abortion of

write transaction more badly than other environment. So, proposed system

solved Write-Write conflicts.

Illustration of how proposed method works is, shown in “Fig. 2”, The two

mobile hosts MH1 and MH2 access the same data item x. MH1 execute

Transaction T1 to write data item x. MH2 execute Transaction T2 to write

data item x. In our proposed method, both transactions T1 and T2 start

working. When T2 attempts to write object x, a potential conflict is detected.

At this point, T2 is stop working and store previous perform result. This is

done Database Management System automatically. If T1 successfully

validates and commits, transaction T2 resumes its execution. There is no

need for standby shadow creation. So, it reduces standby shadow creation

time and memory usage.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 109

T1

T2

T2

s

s

Wx

Wx

Wx

V/C

Conflict occur

and waiting

V/C

S: Begin Transaction

WX: Write on object x

V/C:Valid and Commit

 Deadline

T2

Time

Fig. 2 Schedule with Write-Write conflict for proposed method

 “Fig. 3” defines incoming transactions with their time. MH1 executes

Transaction T1 want to go Nay Pyi Taw (NPT) to Brunei Darussalam

(BWN). There is no direct flight for NPT to BWN. So, use three transits:

NPT to Yangon (RGN), RGN to Bangkok (DMK), and DMK to BWN.

MH2 executes Transaction T2 want to go Bagan Nyaung-U (NYU) to Bali

(DPS).There is no direct flight. So, use three transits: NYU to RGN, RGN to

DMK, and DMK to DPS. Conflict occurs in RGN to DMK transit.

NYU_RGN RGN_DMK DMK_DPS

T2
0

20 40 60 80

10 1303020 70605040 12011010090800

NPT_RGN RGN_DMK DMK_BWN

T1
0

10 30 50 70

time(ms)

Fig. 3 Transaction with their time

For conflict RGN_DMK transit, proposed method Concurrency Control

Mechanism using Modified SCC-2S Algorithm does not need to create

standby shadow and wait the late conflict transaction to complete the first

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 110

transaction. The reach time for Transaction T2 (MH2) for RGN-DMK transit

is later than Transaction T1 (MH1). So, MH2 wait MH1 finish it process at

the point if conflicts occur. After finish transaction T1 (MH1) transaction T2

(MH2) resumes its operation is shown in fig 4.

10 1303020 70605040 12011010090800

NPT_RGN RGN_DMK DMK_BWN

T1
10 30 50 70

NYU_RGN

Conflict

occur and

Waiting
T2

20 40 70

DMK_DPS

T2
90 110

RGN_DMK

Transaction T1 commit at time 70

and T2 operation start again and

finish at time 110

time(ms)

70

Fig. 4 Write-write conflict solves by proposed method

Due to the nature of network latency, processing speed and other nature,

etc conflicts can occur different time or at the same time. Moreover, in these

days most of the concurrency control mechanisms consider priority theory

to provide high response and throughput. So, proposed method added rules

for the conflicts occur at the same time. To illustrate proposed method,

proposed system use two databases in FH. Proposed method assume all

require data for transaction T1 (MH1) can get only one database and require

data for transaction T2 (MH2) need more than one database. Transaction T2

waits the end of transaction T1 and save immediate results. ““Fig. 5” shows

the two mobile hosts MH1 and MH2 access the same data item at the same

time and “Fig. 6” illustrates proposed method with examples.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 111

T1

T2

T2

s

s

Wx

Wx

Wx

V/C

Conflict occur

and waiting

V/C

S: Begin Transaction

WX: Write on object x

V/C:Valid and Commit

Deadline

T2

Time

 Fig. 5 Schedule with Write-Write conflict at the same time by proposed method

10 1303020 70605040 12011010090800

NPT_RGN RGN_DMK DMK_BWN

T1
10 30 50 70

NYU_RGN

T2

10 30 70

DMK_DPS

T2
90 11070

RGN_DMK

Transaction T1

 commit at time 70 and T2

operation start again and finish at

time 110

time(ms)

Conflict occur and

waiting

 Fig. 6 Write-Write conflict at the same time solves by proposed method

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 112

3. GENERAL RULES FOR PROPOSED METHOD

(CONCURRENCY CONTROL MECHANISM USING MODIFIED

SCC-2S ALGORITHM)

Proposed method is applied in AirLine Reservation System and use two

database for propose method. Proposed method use fId for flightId, rId for

routeId, date for reservation_date, r for reach time and n for no of transit

count.

Begin

 Income write lock request transaction Twt

Add Twt into object array named list

for (int i=0;i<list.length-1;i++){

 for (int j=i+1;j<list.length;j++){

 If(list[i].fId&&rId&&date ≠ list[j]. fId&&rId&&date)

 Transactions run concurrently.

 Elseif (list[i].fId&&rId&&date==list[j]. fId&&rId&&date)

 If (list[i]. fId&&rId.r < list[j]. fId&&rId.r)

 wait list[j]

 Else if (list[i]. fId&&rId.r == list[j]. fId&&rId.r)

 Check data can get only one database or not

 If (list[i] access only one database and list[j] access more than

one database)

 wait list[j]

 Else if (list[i] and list[j] access only one database)

 Check n

 If(n of list[i]> n of list[j])

 wait List[i]

 Else

 wait List[j]

 Elseif(list[i] and list[j] access more than one database)

 Check n

 If(n of list[i]> n of list[j])

 wait list[i]

 Else

 wait list[j]

 Else

 wait list[i]

 Else

 wait list[i]

 End if

 }

 }

End

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 113

3.1 Mathematical Expression for Proposed Method

Let T = T1, T2, T3, ... , Tm be the set of uncommitted transactions in the

system. For each conflict transaction Tr in the system , a set WaitFor(Tr) is

maintained, which contains a list of tuples of the form (Ts , x), where Ts ∈

T and x is an object of the shared database. (Ts, x) ∈ WaitFor (Tr) implies

that Tr must wait for Ts before being allowed to read or write object x. The

notation (Ts, -) ∈ WaitFor(Tr) is used where there exists at least one tuple

(Ts , x) ∈ WaitFor(Tr), for some object x. Details of the Concurrency

Control Mechanism using Modified SCC-2S Algorithm is defined as

follows: detected, and the way they are resolved.

• New transaction Tr is requested for execution, it execute without any

interrupt.

Mathematical expression for write/write conflict

• Whenever a transaction Tr wishes to write an object x that has been

written by Transaction Ts, if the time of transaction Tr write an object x

is a little late than the time of transaction Ts write an object x then,

 If (Ts, x) ∉ WaitFor (Tr) then add transaction Tr in the waiting list

such as (Ts, x) ∈ WaitFor (Tr).

 Transaction Tr must wait Transaction Ts commit time and save it

intermediate result in the log file automatically (Database Server can

perform this work automatically). When Transaction Ts commit,

release all of it’s acquire lock and transfer its locks to the

transactions in the WaitFor list. At that time, transaction Tr resume

its execution and acquire the require lock.

Mathematical expression for write/write conflict at the same time

• Whenever a transaction Tr wishes to write an object x that has been

written by Transaction Ts. The two transactions Tr and Ts write the same

data object x at the same time. Proposed method assume that transaction

Ts access only one database module and transaction Tr access more than

one database module.

 If (Ts, x) ∉ WaitFor (Tr) then add transaction Tr in the waiting list

such as (Ts, x) ∈ WaitFor (Tr).

 Transaction Tr must wait Transaction Ts commit time and save it

intermediate result in the log file automatically (Database Server can

perform this work automatically). When Transaction Ts commit,

release all of it’s acquire lock and transfer its locks to the

transactions in the WaitFor list. At that time, transaction resume its

execution and acquire the require lock.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 114

• Whenever it is decided to commit transaction Ts, then release all of it’s

acquire lock and transfer it locks to the transactions in the WaitFor list.

4. ANALYSIS OF CONCURRENCY CONTROL USING PROPOSED

METHOD AND OTHER CONCURRENCY CONTROL

ALGORITHMS

Real-time database management system is a combination of conventional

database management system and real-time system. Like other database

system, real-time database system can process transactions and guarantee

database consistency. Furthermore, this database system can operate in real-

time that satisfy time constraints on each transaction.

Existing concurrency control algorithms for conventional database

systems attempt to maximize concurrency, but ignore timing constraints.

Deadline scheduling algorithms for conventional real-time systems do

consider timing constraint, but ignore data consistency problems. Since

concurrency control algorithms may introduce unpredictable delay due to

transaction restarts and blocking, there is clearly a real need for a

concurrency control model that combines the timeliness of deadline

scheduling algorithms and the data consistency provided by conventional

concurrency control algorithms [6].

Various concurrency control algorithms differ from the time when

conflicts are detected, and the way they are resolved. Most of concurrency

control method based on Pessimistic Concurrency Control (PCC) and

Optimistic Concurrency Control (OCC). But in mobile environment, most

of the method based on OCC. In OCC, each transaction perform database

operation using three distinct phases- read phase, validation phase and write

phase. Moreover, OCC can only detect conflicts at transaction commit time

and resolve these conflicts by restarting conflict transactions. Moreover,

most of the concurrency control method used in mobile environment lead to

Mobile Ad-hoc Network. In this network MHs perform database operation.

It is good for controlling central bottleneck. But it requires a lot of other

things to increase performance and reduce system performance. So,

proposed system performs database operation at fixed host. To use OCC,

MHs have Database System Module to perform database operations. After

finishing database operation, MHs send result back to FH to check conflicts

or not. If conflicts occur between transactions, only one MH write request is

performed and other MHs must perform database operations again.

Pessimistic Concurrency Control (PCC) is based on two phase locking

protocol. In this method, concurrent users access a row and only one user

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 115

can get this row. That row is unavailable to other users until the acquired

user release that row . So, if conflicts occur between transactions, conflicted

transactions perform database operation again. PCC can detect conflicts

immediately when they occur and resolve these conflicts using blocking.

PCC algorithm is mostly useful in situations where it is harmful for the

record to change during transaction processing time. But, PCC is not useful

in a disconnected architecture. To use PCC in Mobile Environment,

connections are open only long enough to read or update the data, so this

method requires sustaining locks for long periods. PCC blocking based

conflict resolution policy require a lot of resource. Moreover, this method

can miss the deadlines as a result of unbounded waiting due to blocking.

When the original SCC-2S method is analyzed, it can only handle read-

write conflicts. When compares with read and write conflict, read priority is

lower than write priority. So, in this method, read transaction only executes

as a standby shadow. In real time database system, concurrent users can

encounter Read-Write conflict as well as Write-Write conflict. Therefore,

proposed system manipulates this condition. Moreover, concurrency control

methods use priority theory to increase performance and to reduce deadline.

So, proposed method also added priority theory.

Proposed method Concurrency Control Mechanism using Modified SCC-

2S Algorithm completely eliminates the complicated locking problems and

delay commit. This approach is useful for critical real-time database system.

And also according to the MySQL server nature, it can be manipulated the

concurrent 1400 users [7]. When our proposed method is used in Dynamic

Web Application Architecture, it can manage more than concurrent 1400

users expected. Moreover, it is very compatible methods for not only flat

transactions but also nested transactions.

4.1. Performance Result

 “Fig. 7” shows performance metric of memory usage for ten concurrent

users and “Fig.8” shows performance metric of response time for ten

concurrent users.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 116

Fig. 7 Memory Usage for ten concurrent users

Fig. 8 Response time for ten concurrent users

5. CONCLUSIONS

Most concurrency control method used for real-time database system in

mobile environment solves consistency issue (concurrent access). Proposed

method provides high respond time and throughput. Moreover, proposed

method decreases the number of missed deadlines; reduce battery power and

memory usage in the system. Moreover, MHs cannot require to have

database system module and MHs can live thin clients.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 2. AUGUST/SEPTEMBER 2014 117

REFERENCES

[1] T. Ragunathan, Speculation-Based Protocols for Improving the Performance of Read-

Only Transactions, Center for Data Engineering, International Institute of Information

Technology, Hyderabad, India, December 2010.

[2] S. A. Bukhari, and S. R. Aparicio, A Survey of Current Priority Assignment Policies

(PAP) and Concurrency Control Protocols (CCP) in Real-Time Database Systems

(RTBDS), 2012.

[3] S. A. Moiz, S. N. Pal, J. Kumar, P. Lavanya, D. C. Joshi, and G. Venkataswamy,

Concurrency Control in Mobile Environments: Issues & Challenges, International

Journal of Database Management Systems (IJDMS), vol.3, no.4, November 2011.

[4] P. Rob, and C. Coronelm, Database System: Design, Implementation, and

Management, 8th Edition, Course Technology, Cengage Learning, ISBN- 13: 978-1-

4239-0201-0, ISBN- 10: 1-4239-0201-7, USA, 2009, pp.412-440, pp.494.

[5] A. Bestavros, S. Braoudakis, and E. Panagos, Performance Evaluation of Two-Shadow

Speculative Concurrency Control, Computer Science Department, Boston University,

Boston, MA 02215, February 1993.

[6] V. Swaroop, G. K. Gupta, and U. Shanker, Issues In Mobile Distributed Real Time

Databases: Performance And Review , India, 2011.

[7] A. DIN, Structured Query Language (SQL) A Practical Introduction, University of

Rome La Sapienza, May 1994, http://www.dis.uniroma1.it.

This paper may be cited as:

Nyo. N. Y. and Hninn. A. T., 2014. Design and Analysis of Concurrency

Control Mechanism Using Modified SCC-2S Algorithm in Mobile

Environment. International Journal of Computer Science and Business

Informatics, Vol. 14, No. 2, pp. 104-117.

