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Abstract 

This paper presents a dual hybrid method to solve job shop scheduling problem 

(JSP). We use a genetic algorithm (GA) combined with the dual hybrid approach to 

obtain a new genetic algorithm (GTD-GA). The algorithm proposed new hybrid 

approach called dual hybrid, and new data organization with the purpose of 

maximizing the GT algorithm. They're building program for the experimental 

schedule finding maximum job shop problem. In order to prove the effectiveness of 

the algorithm, we ran on the standard given by Muth and Thompson and compare 

with the results of Yamada used GT-GA for JSP. Moreover, we also compare them 

with the local search genetic algorithm of M. Kebabla, L. H. Mouss for the job shop 

problem. 

 

Keywords: Jobshop Scheduling, Schedule, Genetic Algorithm. 

 

1. INTRODUCTION 

Job shop scheduling problem (JSP) is one of the well-known classic problems. There 

are many approaches to solve it and the first work on this field is perhaps the paper 

of Fiedman and Akers [3]. 
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JSP general statements for a set  n jobs {Jj}1 ≤ j ≤ n  and a set of m machines {Mi}1 ≤ i ≤ 

m   must satisfy the following conditions: 

1. At the same time each machine can process only a single job. 

2. The set of n jobs {Jj}1 ≤ j ≤ n  has processed on all m machines {Mi}1 ≤ i ≤ m.  

3. Each job must be processed on each machine in a given order of 

operations. The sequence of operations performed each task in turn on the 

machine called sequential technology. 

4. The handling of a job Jj at the machine Mi is called the operation Oij.  

5. Each operation Oij executed must be uninterrupted on the given machine 

Mi.  

6. The beginning processing time and the finishing time of operation Oij are 

denoted respectively by T_Sij   and by T_Fij. The processing time operation 

Oij is denoted by Time_jobij. 

7. The time to complete the processing of all jobs is called makespan and is 

denoted by Time_Fmax.  

The requirement of JSP problem is to determine a schedule (order processing jobs on 

each machine) with  the possible smallest Time_Fmax.  

Example: A JSP for 4 machines and 4 jobs including sequential technology of 

machines for each job with the processing time of each job on each machine (in 

parentheses) is given in Table 1.  

 
Table 1. JSP 4 jobs, 4 machines 

 

Jobs Machine (processor time) 

1 1(1) 2(4) 3(3) 4(15) 

2 2(3) 3(5) 4(12) 1(7) 

3 4(8) 1(9) 2(16) 3(10) 

4 2(11) 3(6) 1(2) 4(13) 
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Job shop scheduling problem is a NP-hard problem and is  one of the most difficult 

combinatorial optimization problems. JSP problem can be solved with a polynomial 

algorithm only in some special cases. For n = 2,  Akers [2] proved that the problem 

of finding JSP  can be solve with a polynomial time algorithm using shortest path 

algorithm. Using a method of Kravchenko and Sotskov [11], Brucker [5] give a 

polynomial time algorithm for the JSP with m = 2 machines and n = k (k is a 

constant) jobs. Except for some special cases mentioned above, the remaining cases 

of JSP are NP-hard. This is the result of a research of Shaklevich Sotskov [15]. Table 

2 summarizes the complexity of JSP. 

                               
                                   Table 2. The computational complexity of JSP 

 

 Number of m machines 

2 3 Constant Depending 

on the 

The 

number n 

jobs 

2 P P P P 

3 P P P NP-hard 

Constant P P NP-hard NP-hard 

Depending 

on the 

P NP-hard NP-hard NP-hard 

 

JSP was published first time in 1955. A statement for this problem can be found in a 

paper of Akers and Friedman. Followed them are the studies of Bowman (1959) and 

Wagner (1959) in which there was only one job that can be handled on maximal 3 

computers. The year 1963 marked an important milestone in JSP when Fisher and 

Thompson [12, 7] studied a JSP with 10 jobs and 10 machines. This test was 

considered to be one of the most intractable of JSP because the optimal solution was 

found ever after more than 20 years later. They proposed GT algorithm as active 

schedules. The result of H. Fisher and GLThompson [7] can be found in the book 

"Industrial Scheduling", edited by JF-Muth and GL- Thompson [12] in 1963. 

The method of solving the problem as 'branching method approach' introduced by 

GH Brooks and CR White [4] who pioneered solving the job shop. Finally, in 1985, 

E. Carlier and Pinson [6] succeeded in solving optimization problems Mt10 using 

algorithms branch access. Finding optimal solution for JSP with unsightly test is a 

major challenge because it is a NP-hard problem. Thus, approximate methods have 

been developed. One of the approximate methods considered to be most effective is 

genetic algorithm. 
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John Holland [9] is considered as the founder of genetic algorithm. GA (Genetic 

Algorithms) is characterized by a search strategy based on population and by the 

genetic operators: selection, mutation and crossover. Nakano and Yamada [13] 

developed the first classical hybrids method and obtained quite good results. Yamada 

[16] developed GT-GA algorithm with many significant achievements. In 2012, M. 

Kebabla, LH Mouss [10] offered “A local search genetic algorithm for the job shop 

scheduling problem”. Recently, Nguyen Huu Mui and Vu Dinh Hoa [14] proposed a 

new hybrid method coded calendars by natural numbers and a new crossover 

operator combined 3 individual parent to an individual children.  

After a period of researching methods to solve the problem, we find a new hybrid 

method with new mutations which may be more efficiently. Our innovations are: 

 1. Reorganize database to reduce leverage calculations suitable grafting and 

new mutations. 

 2. Use the GT algorithm taking good jealous of mutant to a better generation, 

with the aim to get earlier convergence than the GT-GA. 

 3. Apply new crossover method: from 2 individual parents P1, P2 hybridized 

according to GT algorithm to F1 and F2 offspring, then proceed hybridized form F1 

and F2 to FF1 and FF2. With this new crossover approach, this starting personal 

space can be expanded to diverse selection closer to a optimal experience. 

2. CONTENT 

In what follows, we present a method of organizing new data processing allows new 

mutations and new crossover. 

2.1. New data encryption 

Suppose there are n jobs to be processed on m machines. T matrix is called matrix 

sequentially technology. We will encode matrix C where Cij is 1 if the job j is done 

on machine i at some time, and Cij is 0 if the job j is not done on machine i. L_T is 

the matrix where L_Tij is the next machine which performs the job i, according the 

sequential technology, after this job was performed on the j machine. F_T is the 

matrix where F_Tij is the machine which performed the job i just before it has to be  

performed on the j machine according the sequentially technology.  
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For example is the problem of 4 jobs, 4 machines given in Table 1. T matrix and 

transformation matrix C, L_T, F_T are given in Figure 1, respectively: 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The matrix T, C, L_T, F_T                                   

2.2. Mutation operator 

Operator mutations on individual parent P were carried out by following these steps: 

1. Choose a random matrix H where Hij is 0 or 1, apply the GT algorithm to 

generate mutant P_C using the matrix H. 

2. Create G, the set of the first stage in the sequence of all these technology 

jobs, using the matrix C (only if Cij is 1) so that if Oij   G then T_Sij=0; and VT [i] 

= 1. 

3. Construct the set V_G G satisfying that if Oij  V_G, then T_Sij is the 

possible minimum value. 

4. Construct the set E_G V_G satisfying if Oij  E_G, then HiVT[i] =1 and j 

= PiVT[i]. 

5. If E_G ≠ Ø, then choose randomly Oij   E_G. If E_G = Ø, choose Oij  

V_G randomly.  

6. P_CiVT[i] = j; VT[i] = VT[i]+1; Remove Oij from the set G; if k ≠ 0 (with k 

= L_Tij), then  add Oik in G.  

7. Update to T_Sij if Oij  G using the following formula: 

                r = P_CiVT[i]-1 

                k = F_Tij               

               T_Sij = Max( T_Sir + Time_jobir , T_Skj + Time_jobkj) 

8. Go to step 3 until all stages are scheduled in mutant P_C. 
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If mutant P_C is less adaptive than individuals P, then we repeat these steps to create 

mutant P or stop once reaching the maximum number of mutations (through variable 

input level). 

For example, individual parent P and H matrix generated mutant P_C in Figure 2: 

 

 

 

 

 

Figure 2.  The P parent and mutant P_C matrix H 

 

Time_Fmax  Individual's parent P is: 66 

Time_Fmax  P_C of mutants is: 48 

 

2.3. GTD Crossover 

Operator 2 hybrid created on individual P1 and P2 parents was conducted according 

to the following steps: 

1. Choose a random matrix H which Hij the value 0 or 1. Using genetic 

algorithms get better GT parents P1 and P2 through the matrix H to generate F1 and 

F2 offspring. From the F1 and F2 be the application of the GT get good genes of 

their parents through the matrix H to generate FF1 and FF2 offspring. 

 2. Create G is the set of the first stage in the sequence of all these 

technologies jobs through the matrix C (Cij = 1 will be included in G), if Oij   G is 

T_Sij=0; and VT [i] = 1. 

3. Construct set V_G G satisfying if Oij  V_G, then T_Sij is the minimum 

value that can be obtained. 

 4. Construct set E_G_F V_G satisfying if Oij  E_G, then HiVT[I ] = 1 and j 

= P1iVT[i] . 

 5. If E_G_F ≠ Ø, then choose randomly Oij  E_G, then trip to step 8. 

 6. If E_G_F = Ø, Set E_G_M V_G satisfied if Oij  E_G, then HiVT[i ] = 0 

and j = P2iVT[i] . 

 7. If E_G_M ≠ Ø, then choose randomly Oij  E_G_M. Conversely, choose 

Oij  V_G randomly. 

8. F1iVT[i] = j; VT[i] = VT[i]+1; Oij removed from the set G; if k ≠ 0 (with k = 
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L_Tij) then  add Oik in G.  

9. Update to T_Sij if Oij  G using the following formula: 

                r = P_CiVT[i]-1 

                k = F_Tij               

               T_Sij = Max( T_Sir+ Time_jobir , T_Skj+ Time_jobkj) 

10. Go to step 3 until all phases are scheduled in individual F1 crossovers. 

 

This methodology improves our differences. We produce F2 simultaneously in step 4 

with additional conditions: j1=P2iVT[i], with additional conditions in Step 6: j1=P1iVT[i] 

and in step 8 with F2iVT[i] =j1. Using F1 and F2 as the parents of FF1 and FF2 to 

produce these steps as well as adopted hybrid matrix H. From two individual P1 and 

P2 parents we are offering first creation of four new individual at F1, F2 , FF1, FF2 

with the same operators number as the creation of our first offspring using GT_GA 

algorithm. For example, we give two individual crossover parents P1 and P2 through 

the matrix H as shown in Figure 3: 

 

 

 

 

Figure 3. Parents P1, P2 and matrix H 

 

 

 

 

 

 

 

 

                      

Figure 4. The generated in children F1, F2, FF1, FF2 
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Table 4. Time_Fmax of individual values P1, P2, F1, F2, FF1, FF2 

 

Individual P1 P2 F1 F2 FF1 FF2 

Time_Fmax   66 52 48 66 66 50 

 

2.4. Operator selection  

 Operators for selectively choosing individual n_gen generation t + 1 are 

described as follows:  

 1. Construct intermediate solution set P '(t) applying mutation and 

hybridization: 
                          + Apply mutation operator for P (t) is P1 (t). 

                          + Apply crossover operator for P (t) is P2 (t). 

           + P'(t) = P(t)   P1 (t)   P2(t). 

  2. Choose one individual with the best adapted from the first generation to 

generation t, called Pmin, in the following way: 

Choose individual which may be the most adaptable in the set P '(t), called P'min , if t 

= 1 then          Pmin= P'min. If t > 1 and  if P'min have better adaptability than Pmin , then 

replace Pmin  with P'min.. 

 3. Get n_gen - 1 random individuals remaining in P '(t) according to the 

principles of the wheel. 

 

2.5. Genetic Algorithms for JSP 

Void  GA_JSP () 

{       

 t  0  ;                                   //  t is the number of generations of evolution 

 Initialize P (t);                         // GT algorithm 

  while ( t < n_g ) do              //n_g is generations 

  { 

         Construct intermediate solution set P '(t) by applying mutation and 

hybridization: 
                          + Apply mutation operator for P (t) to obtain P1 (t) in Section 2.2 

                          + Apply crossover operator for P (t) to obtain P2 (t) in Section 2.3 

           + P'(t) = P(t)   P1 (t)   P2(t)     

           Selective P (t) from P '(t) in Section 2.4 

                      t = t+1 ;  

           }       

} 
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The correctness of the algorithm is confirmed by the following characteristics: 

 1. When initializing n_gen individual's initial population we use GT 

algorithm to generate a schedule, so each individual children is born with an active 

schedule [13] [16]. 

 2. During mutation, mutant individuals are modified by taking a number of 

individual genes fathers through the matrix H applying GT algorithm, so it remains 

an active schedule. 

 3. Allow crossovers from two parent individuals P1 and P2 take individual 

genes through the parent matrix H applying GT algorithm to generate children F1 

and F2 schedule, so each individual children is born by this calendar will be an 

active one. From F1 and F2 and through the matrix H obtained simultaneously 

applied genetic algorithms GT with calendar children FF1 and FF2 is a schedule 

which actively. 

 4. The algorithm will stop when it runs through all generations. 

 5.  Since the algorithm maintains the best solution in the population, before or 

after the selection, so the algorithm is converged to the global optimum which is not 

reduced by the properties of the next generation. These results are discussed with 

schema theorem and are proved in [8]. 

  

3.  RESULT AND CONCLUSIONS  

Based on the method proposed in this paper, we have designed a program in C++ 

language to run tests on a PC with a processor Core 2 Dual-speed 2 4GHz. The 

performance of the algorithm was analyzed on a set of benchmarks on the job-shop 

scheduling problem instances from literature. The size of the benchmark instances 

varied from 10 to 20 jobs and from 5 to 20 machines. We consider (FFT6, FT10, 

FT20) proposal by Fisher and Thompson [12]; three problems (ABZ5, ABZ6, 

ABZ7) generated by Adams, Balas & Zawack [1]. Table 5 presents the result 

compared our proposed GTD-GA algorithm with the GT-GA by Yamada [ 8]. 

                                                
Table 5. Comparison of GTD-GA and GTD-GA 

 

Instance(size) 

Best generated 

solution with GT-

GA 

Best generated 

solution with 

GTD-GA 

Best known   

solution 

FT06 (6  6) 55 55 55 

FT10 (10  10) 930 930 930 

FT20 (20  5) 1185 1182 1165 
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FT06 proposal for optimal results also FT10 for optimal results are obtained only 

after 80 trials. GT-GA algorithm by Yamada [13] [16] proposed FT06 gives optimal 

results after 2 trials, FT10 gives optimal results after 100 trials. Table 6 compares the 

results of GTD-GA algorithm with the results of GLS algorithm proposed by M. 

Kebabla, LH Mouss [10]. 

                                           
Table 6. Comparison of GT-GA and GLS 

 

Instance(size) 

Best 

generated 

solution with 

GT-GA 

Best generated  

solution with  

GA in 5  

attempts 

Best generated  

solution with  

GLS in 5  

attempts 

Best 

known   

solution 

ABZ5 (10  10) 1234 1238  1234    1234 

ABZ6 (10  10) 943 944  943 943 

ABZ7 (15 20) 665 680 667 656 

 

In the tests, ABZ7 GTD-GA algorithm gives better results than GLS algorithm [10].                    

The comparing test results may indicate that the method we propose has the 

following advantages:  

            1. The organization using the 2 matrices L_T and F_T reduces the numbers 

of search operations. 

 2. When we use a mutation associated with GT algorithms, it searches nearby 

so quickly and find a better value mutation father and minimize the number of 

calculations. 

 3. Our first children are 4 instead of getting only one child by the same 

parents and with the same number of operators. 

 

Our designed program is tested on a standard data of Muth and Thompson and gives 

better results than the latest algorithm GA. However, for problems with large-size 

test ABZ7 (15  20), the program has to find the optimal schedule. In the future we 

will continue to develop out new methods with higher efficiency. 
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