
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 14

Dual Hybrid Algorithm for Job Shop

Scheduling Problem

Do Tuan Hanh

Hanoi National University of Education

136 Xuân Thuy Cau Giay Hanoi Vietnam

Vu Dinh Hoa

Hanoi National University of Education

136 Xuân Thuy Cau Giay Hanoi Vietnam

Nguyen Huu Mui

 Hanoi National University of Education

136 Xuân Thuy Cau Giay Hanoi Vietnam

Abstract

This paper presents a dual hybrid method to solve job shop scheduling problem

(JSP). We use a genetic algorithm (GA) combined with the dual hybrid approach to

obtain a new genetic algorithm (GTD-GA). The algorithm proposed new hybrid

approach called dual hybrid, and new data organization with the purpose of

maximizing the GT algorithm. They're building program for the experimental

schedule finding maximum job shop problem. In order to prove the effectiveness of

the algorithm, we ran on the standard given by Muth and Thompson and compare

with the results of Yamada used GT-GA for JSP. Moreover, we also compare them

with the local search genetic algorithm of M. Kebabla, L. H. Mouss for the job shop

problem.

Keywords: Jobshop Scheduling, Schedule, Genetic Algorithm.

1. INTRODUCTION

Job shop scheduling problem (JSP) is one of the well-known classic problems. There

are many approaches to solve it and the first work on this field is perhaps the paper

of Fiedman and Akers [3].

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 15

JSP general statements for a set n jobs {Jj}1 ≤ j ≤ n and a set of m machines {Mi}1 ≤ i ≤

m must satisfy the following conditions:

1. At the same time each machine can process only a single job.

2. The set of n jobs {Jj}1 ≤ j ≤ n has processed on all m machines {Mi}1 ≤ i ≤ m.

3. Each job must be processed on each machine in a given order of

operations. The sequence of operations performed each task in turn on the

machine called sequential technology.

4. The handling of a job Jj at the machine Mi is called the operation Oij.

5. Each operation Oij executed must be uninterrupted on the given machine

Mi.

6. The beginning processing time and the finishing time of operation Oij are

denoted respectively by T_Sij and by T_Fij. The processing time operation

Oij is denoted by Time_jobij.

7. The time to complete the processing of all jobs is called makespan and is

denoted by Time_Fmax.

The requirement of JSP problem is to determine a schedule (order processing jobs on

each machine) with the possible smallest Time_Fmax.

Example: A JSP for 4 machines and 4 jobs including sequential technology of

machines for each job with the processing time of each job on each machine (in

parentheses) is given in Table 1.

Table 1. JSP 4 jobs, 4 machines

Jobs Machine (processor time)

1 1(1) 2(4) 3(3) 4(15)

2 2(3) 3(5) 4(12) 1(7)

3 4(8) 1(9) 2(16) 3(10)

4 2(11) 3(6) 1(2) 4(13)

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 16

Job shop scheduling problem is a NP-hard problem and is one of the most difficult

combinatorial optimization problems. JSP problem can be solved with a polynomial

algorithm only in some special cases. For n = 2, Akers [2] proved that the problem

of finding JSP can be solve with a polynomial time algorithm using shortest path

algorithm. Using a method of Kravchenko and Sotskov [11], Brucker [5] give a

polynomial time algorithm for the JSP with m = 2 machines and n = k (k is a

constant) jobs. Except for some special cases mentioned above, the remaining cases

of JSP are NP-hard. This is the result of a research of Shaklevich Sotskov [15]. Table

2 summarizes the complexity of JSP.

 Table 2. The computational complexity of JSP

 Number of m machines

2 3 Constant Depending

on the

The

number n

jobs

2 P P P P

3 P P P NP-hard

Constant P P NP-hard NP-hard

Depending

on the

P NP-hard NP-hard NP-hard

JSP was published first time in 1955. A statement for this problem can be found in a

paper of Akers and Friedman. Followed them are the studies of Bowman (1959) and

Wagner (1959) in which there was only one job that can be handled on maximal 3

computers. The year 1963 marked an important milestone in JSP when Fisher and

Thompson [12, 7] studied a JSP with 10 jobs and 10 machines. This test was

considered to be one of the most intractable of JSP because the optimal solution was

found ever after more than 20 years later. They proposed GT algorithm as active

schedules. The result of H. Fisher and GLThompson [7] can be found in the book

"Industrial Scheduling", edited by JF-Muth and GL- Thompson [12] in 1963.

The method of solving the problem as 'branching method approach' introduced by

GH Brooks and CR White [4] who pioneered solving the job shop. Finally, in 1985,

E. Carlier and Pinson [6] succeeded in solving optimization problems Mt10 using

algorithms branch access. Finding optimal solution for JSP with unsightly test is a

major challenge because it is a NP-hard problem. Thus, approximate methods have

been developed. One of the approximate methods considered to be most effective is

genetic algorithm.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 17

John Holland [9] is considered as the founder of genetic algorithm. GA (Genetic

Algorithms) is characterized by a search strategy based on population and by the

genetic operators: selection, mutation and crossover. Nakano and Yamada [13]

developed the first classical hybrids method and obtained quite good results. Yamada

[16] developed GT-GA algorithm with many significant achievements. In 2012, M.

Kebabla, LH Mouss [10] offered “A local search genetic algorithm for the job shop

scheduling problem”. Recently, Nguyen Huu Mui and Vu Dinh Hoa [14] proposed a

new hybrid method coded calendars by natural numbers and a new crossover

operator combined 3 individual parent to an individual children.

After a period of researching methods to solve the problem, we find a new hybrid

method with new mutations which may be more efficiently. Our innovations are:

 1. Reorganize database to reduce leverage calculations suitable grafting and

new mutations.

 2. Use the GT algorithm taking good jealous of mutant to a better generation,

with the aim to get earlier convergence than the GT-GA.

 3. Apply new crossover method: from 2 individual parents P1, P2 hybridized

according to GT algorithm to F1 and F2 offspring, then proceed hybridized form F1

and F2 to FF1 and FF2. With this new crossover approach, this starting personal

space can be expanded to diverse selection closer to a optimal experience.

2. CONTENT

In what follows, we present a method of organizing new data processing allows new

mutations and new crossover.

2.1. New data encryption

Suppose there are n jobs to be processed on m machines. T matrix is called matrix

sequentially technology. We will encode matrix C where Cij is 1 if the job j is done

on machine i at some time, and Cij is 0 if the job j is not done on machine i. L_T is

the matrix where L_Tij is the next machine which performs the job i, according the

sequential technology, after this job was performed on the j machine. F_T is the

matrix where F_Tij is the machine which performed the job i just before it has to be

performed on the j machine according the sequentially technology.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 18

For example is the problem of 4 jobs, 4 machines given in Table 1. T matrix and

transformation matrix C, L_T, F_T are given in Figure 1, respectively:

Figure 1. The matrix T, C, L_T, F_T

2.2. Mutation operator

Operator mutations on individual parent P were carried out by following these steps:

1. Choose a random matrix H where Hij is 0 or 1, apply the GT algorithm to

generate mutant P_C using the matrix H.

2. Create G, the set of the first stage in the sequence of all these technology

jobs, using the matrix C (only if Cij is 1) so that if Oij  G then T_Sij=0; and VT [i]

= 1.

3. Construct the set V_G G satisfying that if Oij V_G, then T_Sij is the

possible minimum value.

4. Construct the set E_G V_G satisfying if Oij E_G, then HiVT[i] =1 and j

= PiVT[i].

5. If E_G ≠ Ø, then choose randomly Oij  E_G. If E_G = Ø, choose Oij

V_G randomly.

6. P_CiVT[i] = j; VT[i] = VT[i]+1; Remove Oij from the set G; if k ≠ 0 (with k

= L_Tij), then add Oik in G.

7. Update to T_Sij if Oij G using the following formula:

 r = P_CiVT[i]-1

 k = F_Tij

 T_Sij = Max(T_Sir + Time_jobir , T_Skj + Time_jobkj)

8. Go to step 3 until all stages are scheduled in mutant P_C.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 19

If mutant P_C is less adaptive than individuals P, then we repeat these steps to create

mutant P or stop once reaching the maximum number of mutations (through variable

input level).

For example, individual parent P and H matrix generated mutant P_C in Figure 2:

Figure 2. The P parent and mutant P_C matrix H

Time_Fmax Individual's parent P is: 66

Time_Fmax P_C of mutants is: 48

2.3. GTD Crossover

Operator 2 hybrid created on individual P1 and P2 parents was conducted according

to the following steps:

1. Choose a random matrix H which Hij the value 0 or 1. Using genetic

algorithms get better GT parents P1 and P2 through the matrix H to generate F1 and

F2 offspring. From the F1 and F2 be the application of the GT get good genes of

their parents through the matrix H to generate FF1 and FF2 offspring.

 2. Create G is the set of the first stage in the sequence of all these

technologies jobs through the matrix C (Cij = 1 will be included in G), if Oij  G is

T_Sij=0; and VT [i] = 1.

3. Construct set V_G G satisfying if Oij V_G, then T_Sij is the minimum

value that can be obtained.

 4. Construct set E_G_F V_G satisfying if Oij E_G, then HiVT[I] = 1 and j

= P1iVT[i] .

 5. If E_G_F ≠ Ø, then choose randomly Oij E_G, then trip to step 8.

 6. If E_G_F = Ø, Set E_G_M V_G satisfied if Oij E_G, then HiVT[i] = 0

and j = P2iVT[i] .

 7. If E_G_M ≠ Ø, then choose randomly Oij E_G_M. Conversely, choose

Oij V_G randomly.

8. F1iVT[i] = j; VT[i] = VT[i]+1; Oij removed from the set G; if k ≠ 0 (with k =

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 20

L_Tij) then add Oik in G.

9. Update to T_Sij if Oij G using the following formula:

 r = P_CiVT[i]-1

 k = F_Tij

 T_Sij = Max(T_Sir+ Time_jobir , T_Skj+ Time_jobkj)

10. Go to step 3 until all phases are scheduled in individual F1 crossovers.

This methodology improves our differences. We produce F2 simultaneously in step 4

with additional conditions: j1=P2iVT[i], with additional conditions in Step 6: j1=P1iVT[i]

and in step 8 with F2iVT[i] =j1. Using F1 and F2 as the parents of FF1 and FF2 to

produce these steps as well as adopted hybrid matrix H. From two individual P1 and

P2 parents we are offering first creation of four new individual at F1, F2 , FF1, FF2

with the same operators number as the creation of our first offspring using GT_GA

algorithm. For example, we give two individual crossover parents P1 and P2 through

the matrix H as shown in Figure 3:

Figure 3. Parents P1, P2 and matrix H

Figure 4. The generated in children F1, F2, FF1, FF2

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 21

Table 4. Time_Fmax of individual values P1, P2, F1, F2, FF1, FF2

Individual P1 P2 F1 F2 FF1 FF2

Time_Fmax 66 52 48 66 66 50

2.4. Operator selection

 Operators for selectively choosing individual n_gen generation t + 1 are

described as follows:

 1. Construct intermediate solution set P '(t) applying mutation and

hybridization:
 + Apply mutation operator for P (t) is P1 (t).

 + Apply crossover operator for P (t) is P2 (t).

 + P'(t) = P(t)  P1 (t)  P2(t).

 2. Choose one individual with the best adapted from the first generation to

generation t, called Pmin, in the following way:

Choose individual which may be the most adaptable in the set P '(t), called P'min , if t

= 1 then Pmin= P'min. If t > 1 and if P'min have better adaptability than Pmin , then

replace Pmin with P'min..

 3. Get n_gen - 1 random individuals remaining in P '(t) according to the

principles of the wheel.

2.5. Genetic Algorithms for JSP

Void GA_JSP ()

{

 t  0 ; // t is the number of generations of evolution

 Initialize P (t); // GT algorithm

 while (t < n_g) do //n_g is generations

 {

 Construct intermediate solution set P '(t) by applying mutation and

hybridization:
 + Apply mutation operator for P (t) to obtain P1 (t) in Section 2.2

 + Apply crossover operator for P (t) to obtain P2 (t) in Section 2.3

 + P'(t) = P(t)  P1 (t)  P2(t)

 Selective P (t) from P '(t) in Section 2.4

 t = t+1 ;

 }

}

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 22

The correctness of the algorithm is confirmed by the following characteristics:

 1. When initializing n_gen individual's initial population we use GT

algorithm to generate a schedule, so each individual children is born with an active

schedule [13] [16].

 2. During mutation, mutant individuals are modified by taking a number of

individual genes fathers through the matrix H applying GT algorithm, so it remains

an active schedule.

 3. Allow crossovers from two parent individuals P1 and P2 take individual

genes through the parent matrix H applying GT algorithm to generate children F1

and F2 schedule, so each individual children is born by this calendar will be an

active one. From F1 and F2 and through the matrix H obtained simultaneously

applied genetic algorithms GT with calendar children FF1 and FF2 is a schedule

which actively.

 4. The algorithm will stop when it runs through all generations.

 5. Since the algorithm maintains the best solution in the population, before or

after the selection, so the algorithm is converged to the global optimum which is not

reduced by the properties of the next generation. These results are discussed with

schema theorem and are proved in [8].

3. RESULT AND CONCLUSIONS

Based on the method proposed in this paper, we have designed a program in C++

language to run tests on a PC with a processor Core 2 Dual-speed 2 4GHz. The

performance of the algorithm was analyzed on a set of benchmarks on the job-shop

scheduling problem instances from literature. The size of the benchmark instances

varied from 10 to 20 jobs and from 5 to 20 machines. We consider (FFT6, FT10,

FT20) proposal by Fisher and Thompson [12]; three problems (ABZ5, ABZ6,

ABZ7) generated by Adams, Balas & Zawack [1]. Table 5 presents the result

compared our proposed GTD-GA algorithm with the GT-GA by Yamada [8].

Table 5. Comparison of GTD-GA and GTD-GA

Instance(size)

Best generated

solution with GT-

GA

Best generated

solution with

GTD-GA

Best known

solution

FT06 (6  6) 55 55 55

FT10 (10  10) 930 930 930

FT20 (20  5) 1185 1182 1165

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 23

FT06 proposal for optimal results also FT10 for optimal results are obtained only

after 80 trials. GT-GA algorithm by Yamada [13] [16] proposed FT06 gives optimal

results after 2 trials, FT10 gives optimal results after 100 trials. Table 6 compares the

results of GTD-GA algorithm with the results of GLS algorithm proposed by M.

Kebabla, LH Mouss [10].

Table 6. Comparison of GT-GA and GLS

Instance(size)

Best

generated

solution with

GT-GA

Best generated

solution with

GA in 5

attempts

Best generated

solution with

GLS in 5

attempts

Best

known

solution

ABZ5 (10  10) 1234 1238 1234 1234

ABZ6 (10  10) 943 944 943 943

ABZ7 (15 20) 665 680 667 656

In the tests, ABZ7 GTD-GA algorithm gives better results than GLS algorithm [10].

The comparing test results may indicate that the method we propose has the

following advantages:

 1. The organization using the 2 matrices L_T and F_T reduces the numbers

of search operations.

 2. When we use a mutation associated with GT algorithms, it searches nearby

so quickly and find a better value mutation father and minimize the number of

calculations.

 3. Our first children are 4 instead of getting only one child by the same

parents and with the same number of operators.

Our designed program is tested on a standard data of Muth and Thompson and gives

better results than the latest algorithm GA. However, for problems with large-size

test ABZ7 (15  20), the program has to find the optimal schedule. In the future we

will continue to develop out new methods with higher efficiency.

REFERENCES

[1] Adams, J., Balas, E. and Zawack, D., 1988. The Shifting Bottleneck Procedure for Job Shop

Scheduling, Management Science, Vol. 34, No. 3, pp. 391–401.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 14, No. 3. October/November 2014 24

[2] Akers, S.B., 1956. A graphical approach to production scheduling problems, Operations

Research, Vol. 4, No. 2, pp. 244-245.

[3] Akers, S.B. and Friedman, J., 1955. A non-numerical approach to production scheduling

problems, Operations Research, Vol. 3, No. 4, pp. 429-442.

[4] Brooks, G. H. and White, C. R., 1969. An algorithm for finding optimal or near optimal solutions

to the production scheduling problem, The Journal of Industrial Engineering, Vol. 16, No. 1, pp. 34-

40.

[5] Brucker, P., 1994. A polynomial time algorithm for the two machines Job Shop scheduling

problem with a fixed number of jobs, OR Spektrum, Vol. 16, No. 1, pp. 5-7.

[6] Carlier, J. and Pinson, E., 1989. An algorithm for solving the job-shop problem, Management

Science, Vol. 35, No. 2, pp. 164-176.

[7] Fischer, C. and Thompson, G. L., 1963. Probabilistic learning combinations of local job-shop

scheduling rules, In Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, pp. 225-251.

[8] Günter Rudolph, 1994. Convergence Analysis of Canonical Genetic Algorithms, IEEE

Transactions on Neural Networks, special issue on evolutionary computation, Vol. 5, No. 1, pp. 96-

101.

[9] Holland, J. H., 1975. Adaptation in Natural and Artificial Systems, University of Michigan Press.

[10] Kebabla, M. and Mouss, L. H., 2012. A local search genetic algorithm for the job shop

scheduling problem, Revue des Sciences et de la Technologie – RST, Vol. 3, No. 1, pp. 61-68.

[11] Kravchenko, S. A. and Sotskov, Y. N., 1996. Optimal makespan schedule for three jobs on two

machines, ZOR - Mathematical Methods of Operations Research, Vol. 43, pp. 233-238.

[12] Muth, J. F. and Thompson, G. L., 1963. Solving Production Scheduling Problems, In Industrial

Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, Ch. 3.

 [13] Nakano, R. and Yamada, T., 1991. Conventional genetic algorithm for job shop problems, In

Proceedings of International Conference on Genetic Algorithms (ICGA ’91), pp. 474-479.

 [14] Nguyễn Hữu Mùi and Vũ Đình Hoà, 2011. Một thuật toán di truyền lai mới cho bài toán lập

lịch công việc, Kỷ yếu hội nghị khoa học công nghệ quốc gia lần thứ V, pp. 239-249.

[15] Sotskov, Y.N. and Shaklevich, N. V., 1995. NP-hardness of shop-scheduling problems with three

jobs, Discrete Applied Mathematics, Vol. 59, No. 3, pp. 237-266.

[16] Yamada, T., 2003. Studies on Metaheuristics for Jobshop and Flowshop Scheduling Problems,

Japan: Kyoto University, pp. 42-70.

This paper may be cited:

Hanh, D. T., Hoa, V. D. and Mui, N. H. 2014. Dual Hybrid Algorithm for Job Shop

Scheduling Problem. International Journal of Computer Science and Business

Informatics, Vol. 14, No. 3, pp. 14-24.

