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ABSTRACT 

Given a simple undirected graph 𝐺 with 𝑛 vertices, we denote by 𝜎𝑘  the minimum value of 

the degree sum of any 𝑘 pairwise nonadjacent vertices. The graph 𝐺 is said to be 

hamiltonian if it contains a hamiltonian cycle (a cycle passing all vertices of 𝐺). The 

problem 𝐻𝐶 (Hamiltonian Cycle) is well-known a 𝑁𝑃𝐶-problem. A lot of authors have 

been studied Hamiltonian Cycles in graphs with large degree sums 𝜎𝑘 , but only for 

𝑘 = 1, 2, 3. In this paper, we study the structure of nonhamiltonian graphs satisfying 

𝜎4 ≥ 2𝑛, and we prove that the problem 𝐻𝐶 for the graphs satisfying 𝜎4 ≥ 2𝑛𝑡 is 𝑁𝑃𝐶 for 

𝑡 < 1 and is 𝑃 for 𝑡 ≥ 1. 
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1. INTRODUCTION 

In this paper, we use definitions and notations in [4] with exception for 𝐾𝑛  

the complete graph on 𝑛 vertices. We consider only simple undirected 

graphs. Given a graph 𝐺 = (𝑉, 𝐸) on 𝑛 vertices with the vertex set 𝑉 and the 

edge set 𝐸. A set 𝐴 ⊆ 𝑉(𝐺) is independent if no two of its elements are 

adjacent. The independent number of 𝐺, denoted by 𝛼(𝐺), is defined by 

setting 𝛼 𝐺 = 𝑚𝑎𝑥{ 𝐼 : 𝐼 ⊆ 𝑉(𝐺) is independent}. We use 𝜔(𝐺) to denote 

the number of connected components of 𝐺. The graph 𝐺 is tough (or 1-

tough) if 𝜔(𝐺 − 𝑆) ≤  𝑆 for every nonempty subset 𝑆 ⊂ 𝑉(𝐺). 

For two disjoint graphs 𝐺1 and 𝐺2, we denote by 𝐺1 ∗ 𝐺2 the graph with the 

vertex set 𝑉(𝐺1) ∪ 𝑉(𝐺2) and the edge set 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ {𝑥𝑦 | 𝑥 ∈
𝑉 𝐺1 , 𝑦 ∈ 𝑉 𝐺2 }. For example, 𝐾2 ∗ 𝐾3 = 𝐾5. For a positive integer 

𝑘 ≤ 𝛼, we define 𝜎𝑘 𝐺 = 𝑚𝑖𝑛{ 𝑑 𝑥𝑖 
𝑘
𝑖=1 :  𝑥1, 𝑥2, … , 𝑥𝑘  is 

independent}. In the case 𝑘 > 𝛼, set 𝜎𝑘(𝐺) = 𝑘(𝑛 − 𝛼). Instead of 𝜎𝑘(𝐺), 

sometimes we simply write 𝜎𝑘 . 

If 𝐺 contains a hamiltonian cycle (a cycle passing all vertices of 𝐺), then 𝐺 

is called hamiltonian; otherwise, 𝐺 is nonhamiltonian. A graph 𝐺 with a 
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hamiltonian path (a path passing all vertices of 𝐺) is said to be traceable. 

Let 𝐶𝑘  be the cycle of length 𝑘. The graph 𝐺 is said to be 𝑘-connected if 

𝐺 − 𝑋 is connected for any 𝑋 ⊆ 𝑉 with  𝑋 < 𝑘 < 𝑛. Note that a tough 

graph is 2-connected, and toughness is a necessary condition for the 

existence of a hamiltonian cycle in a graph [6]. There is a polynomial 

algorithm 𝑂 𝑛3  time to recognize 2-connected graph. 

The problem 𝐻𝑃, 𝐻𝐶 are well-known 𝑁𝑃𝐶-problem [1] [10]. 

𝑯𝑷 (HAMILTONIAN PATH) 

Instance: Graph 𝐺. 

Question: Is 𝐺 traceable? 

𝑯𝑪 (HAMILTONIAN CYCLE) 

Instance: Graph 𝐺. 

Question: Is 𝐺 hamiltonian? 

A lot of authors have been studied Hamiltonian Cycles in graphs with large 

degree sums 𝜎𝑘 , but only for 𝑘 = 1, 2, 3,  (see [3] [5] [9], etc). 

For a positive integer 𝑘, we state the problem 𝐻𝐶𝑘 as follow: 

𝑯𝑪𝒌  

Instance: Given a real 𝑡 > 0 and a graph 𝐺 satisfying 𝜎𝑘 ≥
𝑘𝑛

2
𝑡. 

Question: Is 𝐺 hamiltonian? 

In [7], [8], we prove that: 

Theorem 1.1 [7]. 𝐻𝐶2(𝑡 < 1) is 𝑁𝑃𝐶 and 𝐻𝐶2(𝑡 ≥ 1) is 𝑃. 

Theorem 1.2 [8]. 𝐻𝐶3(𝑡 < 1) is 𝑁𝑃𝐶 and 𝐻𝐶3(𝑡 ≥ 1) is 𝑃. 

In this paper, we study the class of graphs satisfying 𝜎4 ≥ 2𝑛 for the 

problem 𝐻𝐶4. 
 

2. RESULTS 

The following Theorem will be proved in Section 5. 

Theorem 2.1. Let 𝐺 be 2-connected graph with 𝜎4 ≥ 2𝑛. If 𝐺 is 

nonhamiltonian then 𝛼 𝐺 = 3 and 𝐺 belongs to one of the following three 

classes of graphs: 

1. Class ℱ1 of 2-connected graphs 𝐺 with 𝛼 𝐺 = 3 such that there exists 

a subset 𝑆 ⊆ 𝑉 𝐺 ,  𝑆 = 2 so that 𝐺 − 𝑆 = 𝐾𝑛1
∪ 𝐾𝑛2

∪ 𝐾𝑛3
. 
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Figure 1. Class 𝓕𝟏. 

2. Class ℱ2 of 2-connected graphs 𝐺 with 𝛼 𝐺 = 3 such that there exists 

three disjoint complete graphs 𝐾𝑛1
, 𝐾𝑛2

, 𝐾𝑛3
⊆ 𝐺 and a vertex 𝑥 ∈ 𝑉(𝐺) 

and 𝑦1 ∈ 𝐾𝑛1
, 𝑦2 ∈ 𝐾𝑛2

, 𝑦3 ∈ 𝐾𝑛3
 so that 𝐺 −  𝑥 = (𝐾𝑛1

∪  𝐾𝑛2
∪

𝐾𝑛3
) +  𝑦1𝑦2, 𝑦2𝑦3, 𝑦3𝑦1 . Moreover, there exists three vertices 

𝑧1 ∈ 𝐾𝑛1
−  𝑦1 , 𝑧2 ∈ 𝐾𝑛2

−  𝑦2 , 𝑧3 ∈ 𝐾𝑛3
−  𝑦3  such that 𝑧1, 𝑧2, 𝑧3 ∈

𝑁(𝑥) and 𝑥 can possibly be adjacent to the another vertices. 

 

Figure 2. Class 𝓕𝟐. 

3. Class ℱ3 of 2-connected graphs 𝐺 with 𝛼 𝐺 = 3 such that there exists 

three disjoint complete graphs 𝐾𝑛1
, 𝐾𝑛2

, 𝐾𝑛3
⊆ 𝐺 ( 𝐾𝑛1

 ,  𝐾𝑛2
 ,  𝐾𝑛3

 ≥

3) and distinct vertices 𝑦𝑖 , 𝑧𝑖 ∈ 𝐾𝑛𝑖
 for 𝑖 = 1, 2, 3 so that 𝐺 = 𝐾𝑛1

∪

 𝐾𝑛2
∪ 𝐾𝑛3

+  𝑦1𝑦2,𝑦2𝑦3, 𝑦3𝑦1 +  𝑧1𝑧2, 𝑧2𝑧3, 𝑧3𝑧1 . 

 

Figure 3. Class 𝓕𝟑. 
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Note that the graph 𝐺𝑛 = 𝐾1 ∗ 𝐾1 ∗ (𝐾 3 ∗ 𝐾𝑛−5) with 𝑛 ≥ 11 satisfies 

𝜎4 ≥ 2𝑛 and is not 2-connected. In Section 3, we give polynomial 

algorithms to recognize whether a given graph belongs to ℱ1 ∪ ℱ2 ∪ ℱ3. 

From Theorem 2.1, we conclude the following corollary. 

Corollary 2.1. Every 2-connected graph with 𝛼 ≥ 4 and 𝜎4 ≥ 2𝑛 is 

hamiltonian. 

For 𝑡 < 1, we prove the following Theorem: 

Theorem 2.2. 𝐻𝐶4 (𝑡 < 1) is 𝑁𝑃𝐶. 

Proof. The 𝐻𝐶4 is a subproblem of 𝐻𝐶, so it belongs to 𝑁𝑃. In order to 

prove 𝐻𝐶4 (𝑡 < 1) is 𝑁𝑃𝐶, we will construct a polynomial transformation 

from the problem 𝐻𝑃 to it. 

For any graph 𝐺1 with 𝑛1 vertices, we choose a positive integer 𝑚 ≥

𝑚𝑎𝑥  
𝑡 𝑛1−1 

2(1−𝑡)
, 5 . Then we construct a graph 𝐺2 from 𝐺1 by adding new 

vertex set  𝑝1,𝑝2, … , 𝑝𝑚  ∪  𝑞1, 𝑞2, … , 𝑞𝑚−1  and the edges joining each 

vertex of  𝑝1, 𝑝2,… , 𝑝𝑚   to all other vertices. In this way, we obtain the 

graph 𝐺2 =  𝐺1 ∪ 𝐾 𝑚−1 ∗ 𝐾𝑚 . This construction can be proceeded with the 

Turing machine in polynomial time. 

We observe that the graph 𝐺2 has 𝑛2 = 𝑛1 + 2𝑚 − 1 vertices and 𝜎4 𝐺2 =

4𝑚. Because of 𝑚 ≥
𝑡 𝑛1−1 

2(1−𝑡)
, so 2𝑚 ≥ 𝑡(𝑛1 + 2𝑚 − 1), it implies that 

𝜎4 𝐺2 ≥ 2𝑛2𝑡. 

Now we prove that 𝐺2 has a hamiltonian cycle if and only if 𝐺1 has a 

hamiltonian path. Indeed, if 𝐺1 has a hamiltonian path 𝐻 then 𝐶 =
(𝐻, 𝑝1, 𝑞1, 𝑝2, 𝑞2, … , 𝑝𝑚−1, 𝑞𝑚−1, 𝑝𝑚 ) is a hamiltonian cycle in 𝐺2. 

If 𝐺2 has a hamiltonian cycle 𝐶. Observe that 𝑞𝑖  (𝑖 = 1. . 𝑚 − 1) has only 

neighbor 𝑝𝑗  (𝑗 = 1. . 𝑚), so all vertices in  𝑞1, 𝑞2, … , 𝑞𝑚−1  are only 

adjacent to all the vertices in  𝑝1,𝑝2, … , 𝑝𝑚 . Then, if we remove all vertices 

in  𝑝1,𝑝2, … , 𝑝𝑚   then we obtain 𝑚 connected components, which are 
 𝑞1 ,  𝑞2 , … , .  𝑞𝑚−1  and 𝐺1, each of the connected components has a 

hamiltonian path (the rest of 𝐶 after removing  𝑝1, 𝑝2, … , 𝑝𝑚 ). Therefore, 

𝐺1 has a hamiltonian path. 

Thus, we have a polynomial transformation from 𝐻𝑃 to 𝐻𝐶4(𝑡 < 1). Since 

𝐻𝐶4(𝑡 < 1) ∈ 𝑁𝑃 and 𝐻𝑃 ∈ 𝑁𝑃𝐶, it implies that 𝐻𝐶4 (𝑡 < 1) ∈ 𝑁𝑃𝐶. 

Theorem 2.3. 𝐻𝐶4 (𝑡 ≥ 1) is 𝑃. 

Proof. Assume that 𝐺 satisfies 𝜎4 ≥ 2𝑛𝑡 with 𝑡 ≥ 1. First, we check 

whether 𝐺 is 2-connected or not (it can be done in polynomial time). 
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If 𝐺 is not 2-connected then 𝐺 is nonhamiltonian. 

If 𝐺 is 2-connected, then by Theorem 2.1, either 𝐺 is hamiltonian or 𝐺 

belongs to ℱ1 ∪ ℱ2 ∪ ℱ3 which can be recognize in polynomial time (see 

Section 3). Thus, 𝐻𝐶4 (𝑡 ≥ 1) is 𝑃. 

 

3. POLYNOMIAL ALGORITHMS RECOGNIZING THE CLASSES 

𝓕𝟏, 𝓕𝟐, 𝓕𝟑 

Assume that 𝑆 ⊆ 𝑉(𝐺) and 𝐻1, 𝐻2, … . , 𝐻𝑘  are connected components of 

𝐺 − 𝑆. Note that the problem “Given a vertex set 𝑆 in a graph 𝐺, determine 

𝜔 𝐺 − 𝑆  and whether every connected component of 𝐺 − 𝑆 is complete” 

can be solved in polynomial time by an algorithm 𝑂(𝑛2). Following, we 

design the polynomial algorithms recognizing the classes ℱ1, ℱ2, ℱ3. 

3.1. Algorithm recognizing the class 𝓕𝟏 

Every graph 𝐺 in class ℱ1 is not 1-tough. If we remove 𝑆, then we get three 

connected components which are complete. 

Input: graph 𝐺 with 𝜎4 ≥ 2𝑛. 

Output: Is_Graph_ℱ1 return True if 𝐺 ∈ ℱ1, else return False. 

Algorithm: 

Function Boolean Is_Graph_𝓕𝟏 

Begin 

If 𝐺 is not 2-connected Then Return False; 

For each 𝑆 in 𝑉(𝐺)2 do 

If (𝜔 𝐺 − 𝑆 = 3) and (the connected components 
𝐻1, 𝐻2, 𝐻3 are complete) Then Return True; 

Return False; 

End; 

Checking 𝐺 is not 2-connected can be done by 𝑂(𝑛2) time. Next, there are 

𝐶𝑛
2 iterations, each iteration requires 𝑂(𝑛2) time. Thus the overall time 

required by algorithm Is_Graph_ℱ1 is 𝑂(𝑛4). 

3.2. Algorithm recognizing the class 𝓕𝟐 

For each graph 𝐺 in class ℱ2, if we remove 𝑆 = {𝑥, 𝑦1, 𝑦2, 𝑦3}, then we get 

three connected components 𝐻1, 𝐻2 , 𝐻3 which are complete. 

Input: graph 𝐺 with 𝜎4 ≥ 2𝑛. 

Output: Is_Graph_ℱ2 return True if 𝐺 ∈ ℱ2, else return False. 

Algorithm: 

Function Boolean Is_Graph_𝓕𝟐; 

Begin 
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For each 𝑆 in 𝑉(𝐺)4 do 

If (𝜔 𝐺 − 𝑆 = 3) and (the connected components 
𝐻1, 𝐻2, 𝐻3 are complete) Then 

If there exists 𝑥 ∈ 𝑆 and 𝑆 −  𝑥 = {𝑦1,𝑦2 , 𝑦3} such 
that: 

( 𝑁𝐻1
(𝑥) ,  𝑁𝐻2

(𝑥) ,  𝑁𝐻3
(𝑥) ≥ 1) and 

( 𝑦1𝑦2,𝑦2𝑦3, 𝑦3𝑦1 ⊆ 𝐸(𝐺)) and 

(𝐻1 +  𝑦1 , 𝐻2 +  𝑦2 , 𝐻3 +  𝑦3  are complete) 

Then Return True; 

Return False; 

End; 

There are 𝐶𝑛
4 iterations, each iteration requires 𝑂(𝑛2) time, so the overall 

time required by algorithm Is_Graph_ℱ2 is 𝑂(𝑛6). 

3.3. Algorithm recognizing the class 𝓕𝟑 

For each graph 𝐺 in class ℱ3, if we remove 𝑆 = {𝑦1,𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3}, then 

we get three connected components 𝐻1, 𝐻2, 𝐻3 which are complete. 

Input: graph 𝐺 with 𝜎4 ≥ 2𝑛. 

Output: Is_Graph_ℱ3 return True if 𝐺 ∈ ℱ3, else return False. 

Algorithm: 

Function Boolean Is_Graph_𝓕𝟑 

Begin 

For each 𝑆 in 𝑉(𝐺)6 do 

If (𝜔 𝐺 − 𝑆 = 3) and (the connected components 

𝐻1, 𝐻2, 𝐻3 are complete graphs) Then 

If there exists 𝑦1, 𝑦2, 𝑦3 ∈ 𝑆 and 𝑆 −  𝑦1, 𝑦2, 𝑦3 =
{𝑧1, 𝑧2, 𝑧3} such that: 

( 𝑦1𝑦2,𝑦2𝑦3, 𝑦3𝑦1, 𝑧1𝑧2, 𝑧2𝑧3, 𝑧3𝑧1 ⊆ 𝐸(𝐺)) and 

(𝐻1 +  𝑦1, 𝑧1 , 𝐻2 +  𝑦2, 𝑧2 , 𝐻3 +  𝑦3, 𝑧3  are complete) 

Then Return True; 

Return False; 

End; 

There are 𝐶𝑛
6 iterations, each iteration requires 𝑂(𝑛2) time, so the overall 

time required by algorithm Is_Graph_ℱ3 is 𝑂(𝑛8). 

 



International Journal of Computer Science and Business Informatics 
 
 

 
IJCSBI.ORG 

  ISSN: 1694-2108 | Vol. 15, No. 2. MARCH 2015 44 

 

 

4. PRELIMINARIES 

For what follows we assume that 𝐶 is a longest cycle of 𝐺. On 𝐶      (𝐶 with a 

given orientation), we denote the predecessor and successor (along 𝐶     ) by 

𝑥−, 𝑥+, and 𝑥++ = (𝑥+)+, 𝑥−− = (𝑥−)−. In general, for a positive integer 𝑖, 

𝑥+𝑖 = (𝑥+ 𝑖−1 )+ and 𝑥−𝑖 = (𝑥− 𝑖−1 )−. Moreover, for a vertex set 𝐴 ⊆
𝑉(𝐶), we wirte 𝐴+ =  𝑥+:𝑥 ∈ 𝐴  and 𝐴− =  𝑥−:𝑥 ∈ 𝐴 . The path joining 

two vertices 𝑥 and 𝑦 of 𝐶, along 𝐶     , is denoted by 𝑥𝐶     𝑦, and the same path 

in reverse order are given by 𝑦𝐶     𝑥. 

In this paper, we consider the paths and cycles as vertex sets. If 𝑥, 𝑦 are the 

end vertices of a path 𝑃, sometimes we write 𝑥𝑃𝑦 instead of 𝑃. 

Assume that 𝐻 is a connected component of 𝐺 − 𝐶 and 𝑁𝐶(𝐻) is the set of 

neighbors in 𝐶 of all vertices in 𝐻. A edge sequence is a path joining two 

vertices on 𝐶 and its inner vertices belong to 𝐺 − 𝐶 − 𝐻. In particular, an 

edge joining  2 non-consecutive vertices on 𝐶 is also a edge sequence. 

Lemma 4.1. Let 𝐺 be a 2-connected graph. If 𝐺 is nonhamiltonian and 𝐻 is 

a connected component of 𝐺 − 𝐶 then 

(a) 𝑁𝐶 𝐻 ∩ 𝑁𝐶 𝐻 + = 𝑁𝐶 𝐻 ∩ 𝑁𝐶 𝐻 − = ∅. 

(b) There is no edge sequence joining 2 vertices of 𝑁𝐶(𝐻)+. Similarly, there 

is no edge sequence  joining 2 vertices of 𝑁𝐶(𝐻)−. 

(c) If 𝑣𝑖 , 𝑣𝑗 ∈ 𝑁𝐶(𝐻) for 𝑖 ≠ 𝑗 then there is no vertex 𝑧 ∈ 𝑣𝑖
+𝐶     𝑣𝑗  such that 

{𝑣𝑖
+𝑧+,𝑣𝑗

+𝑧} ⊆ 𝐸(𝐺). Similarly, there is no vertex 𝑧 ∈ 𝑣𝑗
+𝐶     𝑣𝑖  such that 

{𝑣𝑗
+𝑧+,𝑣𝑖

+𝑧} ⊆ 𝐸(𝐺). 

(d) For any 𝑥 ∈ 𝐻 and for any 𝑣𝑖 ∈ 𝑁𝐶(𝐻), 𝑑 𝑥 + 𝑑 𝑣𝑖
+ ≤ 𝑛 − 1. 

Proof. (a), (b), (c) are presented in [2], so we will prove (d). For any 𝑥 ∈ 𝐻, 

𝑑 𝑥 =  𝑁𝐻(𝑥) +  𝑁𝐶(𝑥) ≤  𝐻 − 1 +  𝑁𝐶(𝐻) . By (a) and (b), 𝑑 𝑣𝑖
+ ≤

  𝐺 −  𝐻  −  𝑁𝐶 𝐻 + =  𝐺 −  𝐻 −  𝑁𝐶(𝐻) , so 𝑑 𝑥 + 𝑑 𝑣𝑖
+ ≤  𝐻 −

1 +  𝑁𝐶 𝐻  +  𝐺 −  𝐻 −  𝑁𝐶 𝐻  =  𝐺 − 1 = 𝑛 − 1. 

Lemma 4.2 [2]. Assume that 𝑢, 𝑣 are nonadjacent vertices and 𝑑 𝑢 +
𝑑(𝑣) ≥ 𝑛. Then 𝐺 is hamiltonian if and only if 𝐺 + 𝑢𝑣 is hamiltonian.  

We conclude the following Lemma from Lemma 4.2. 

Lemma 4.3. Assume that 𝐺∗ ⊇ 𝐺 such that 𝑉 𝐺∗ = 𝑉(𝐺) and 𝑑𝐺 𝑢 +
𝑑𝐺(𝑣) ≥ 𝑛 for any edge 𝑢𝑣 ∈ 𝐸 𝐺∗ − 𝐸(𝐺). Then 𝐺 is hamiltonian if and 

only if 𝐺∗is hamiltonian. 
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5. PROOFS OF THEOREM 2.1 

For what follows, we assume that 𝐺 is nonhamiltonian. Because 𝐺 is 2-

connected, so 𝐺 is cycleable. Let 𝐻1, 𝐻2, … , 𝐻𝑚  be the connected 

components of 𝐺 − 𝐶. Clearly,  𝑁𝐶(𝐻𝑖) ≥ 2 for any 𝑖 = 1. . 𝑚. 

Proposition 5.1. 𝐻1, 𝐻2 , … , 𝐻𝑚  are complete graphs. 

Proof. We consider a connected component 𝐻𝑡  (𝑡 = 1. . 𝑚). Because 𝐺 is 2-

connected, so  𝑁𝐶(𝐻𝑡) ≥ 2 and there are at least two vertices 𝑣𝑖 , 𝑣𝑗 ∈

𝑁𝐶(𝐻𝑡). If 𝐻𝑡  is not complete then there are two distinct vertices 𝑥, 𝑦 ∈ 𝐻𝑡  

such that 𝑥𝑦 ∉ 𝐸(𝐺). By Lemma 4.1 (a, b),  𝑥, 𝑦, 𝑣𝑖
+, 𝑣𝑗

+  is an independent 

vertex set, therefore by 𝜎4 ≥ 2𝑛, 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≥ 2𝑛. 

However, by Lemma 4.1 (d), 𝑑 𝑥 + 𝑑 𝑣𝑖
+ ≤ 𝑛 − 1 and 𝑑 𝑦 + 𝑑(𝑣𝑗

+) ≤

𝑛 − 1, it implies that 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≤ 2𝑛 − 2, a 

contradiction. Thus, 𝐻𝑡  is complete, and we have 𝐻1, 𝐻2, … , 𝐻𝑚  are 

complete graphs. 

Proposition 5.2.  𝑁𝐶(𝐻𝑡) ≤
 𝐶 

2
 for every 𝑡 = 1. . 𝑚. 

Proof. By Lemma 4.1 (a), 𝑁𝐶 𝐻𝑡 ∩ 𝑁𝐶 𝐻𝑡 
+ = ∅, therefore  𝐶 ≥

 𝑁𝐶 𝐻𝑡 ∪ 𝑁𝐶 𝐻𝑡 
+ = 2 𝑁𝐶 𝐻𝑡  , it implies that  𝑁𝐶(𝐻𝑡) ≤

 𝐶 

2
 . 

Proposition 5.3. 𝑚 = 1. 

Proof. We consider the case of 𝑚 as follow: 

a) 𝑚 ≥ 4.  

Let 𝑥𝑖 ∈ 𝐻𝑖  for each 𝑖 = 1. .4. Clearly, the vertex set  𝑥1, 𝑥2, 𝑥3 , 𝑥4  is 

independent, by 𝜎4 ≥ 2𝑛 we have 𝑑 𝑥1 + 𝑑 𝑥2 + 𝑑 𝑥3 + 𝑑(𝑥4) ≥ 2𝑛. 

Moreover, by Proposition 5.2 and 𝑚 ≥ 4, 𝑑 𝑥𝑖 ≤  𝐻𝑖 − 1 +  𝑁𝐶 𝐻𝑖  ≤

 𝐻𝑖 − 1 +
 𝐶 

2
, so 𝑑 𝑥1 + 𝑑 𝑥2 + 𝑑 𝑥3 + 𝑑 𝑥4 ≤  𝐻1 +  𝐻2 +  𝐻3 +

 𝐻4 + 2 𝐶 − 4 ≤ 𝑛 +  𝐶 − 4, therefore 𝑛 +  𝐶 − 4 ≥ 2𝑛, it implies that 

 𝐶 ≥ 𝑛 + 4, a contradiction. 

Thus, the case 𝑚 ≥ 4 does not happen. 

b) 𝑚 = 3.  

Let 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2, 𝑧 ∈ 𝐻3 and we consider each vertex 𝑣𝑖 ∈ 𝑁𝐶(𝐻1). 

Claim 5.1. 𝑣𝑖
+ ∈ 𝑁(𝑦) ∪ 𝑁(𝑧). 

Proof. Assume to the contrary that 𝑣𝑖
+ ∉ 𝑁(𝑦) ∪ 𝑁(𝑧), then the vertex 

set  𝑥, 𝑦, 𝑧, 𝑣𝑖
+  is independent, by 𝜎4 ≥ 2𝑛 we have 𝑑 𝑥 + 𝑑 𝑦 +

𝑑 𝑧 + 𝑑(𝑣𝑖
+) ≥ 2𝑛. By Lemma 4.1 (d), 𝑑 𝑥 + 𝑑 𝑣𝑖

+ ≤ 𝑛 − 1. 
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Moreover, by Proposition 5.2 we have 𝑑(𝑦) ≤  𝐻2 − 1 +
 𝐶 

2
 and 

𝑑(𝑧) ≤  𝐻3 − 1 +
 𝐶 

2
. Therefore, 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑 𝑣𝑖

+ ≤ 𝑛 −

3 +  𝐻2 +  𝐻3 +  𝐶 < 2𝑛 − 3, a contradiction. 

Claim 5.2.  𝑁𝐶(𝐻1) =  𝑁𝐶(𝐻2) =  𝑁𝐶(𝐻3) = 2. 

Proof. If  𝑁𝐶(𝐻1) ≥ 3 then by Claim 5.1, there are at least two vertices 

𝑣𝑖 , 𝑣𝑗 ∈ 𝑁𝐶(𝐻1) such that 𝑣𝑖
+, 𝑣𝑗

+ ∈ 𝑁(𝑦) or 𝑣𝑖
+, 𝑣𝑗

+ ∈ 𝑁(𝑧), therefore 

there exists an edge sequence joining 𝑣𝑖
+, 𝑣𝑗

+, which contradicts to 

Lemma 4.1 (b). Thus,  𝑁𝐶(𝐻1) = 2. Similarly, we have  𝑁𝐶(𝐻2) =
 𝑁𝐶(𝐻3) = 2. 

Claim 5.3. 5 ≤  𝐶 ≤ 6. 

Proof. If there exists 𝑣 ∈ 𝐶 such that 𝑣 ∉ 𝑁𝐶(𝐻1) ∪ 𝑁𝐶(𝐻2) ∪ 𝑁𝐶(𝐻3), 

then the vertex set  𝑥, 𝑦, 𝑧, 𝑣  is independent, by 𝜎4 ≥ 2𝑛 we have 

𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑(𝑣) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻1 − 1 +
 𝑁𝐶 𝐻1  =  𝐻1 + 1, 𝑑 𝑦 ≤  𝐻2 + 1, 𝑑 𝑧 ≤  𝐻3 + 1, 𝑑 𝑣 ≤  𝐶 −
1, so 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑 𝑣 ≤  𝐻1 +  𝐻2 +  𝐻3 +  𝐶 + 2 =
𝑛 + 2. It implies that 𝑛 + 2 ≥ 2𝑛 and 𝑛 ≤ 2, a contradiction. Therefore, 

𝑁𝐶 𝐻1 ∪ 𝑁𝐶 𝐻2 ∪ 𝑁𝐶 𝐻3 =  𝐶 , and by Claim 5.2,  𝐶 ≤ 6. 

Moreover, by Lemma 4.1 (a),  𝐶 ≥ 4. If  𝐶 = 4 then by Lemma 4.1 (a) 

and Claim 5.1, there exists an edge sequence joining two vertices in 

𝑁𝐶 𝐻1 
+, which contradicts Lemma 4.1 (b). Thus, we have 5 ≤  𝐶 ≤ 6. 

If  𝐶 = 5, so 𝐶 = (𝑣1, 𝑣2, 𝑣3, 𝑣4 , 𝑣5). Without loss of generality, by Lemma 

4.1 (a, b) and Claim 5.1, we assume that 𝑣1, 𝑣3 ∈ 𝑁𝐶(𝐻1), 𝑣2 ∈ 𝑁𝐶(𝐻2), 

𝑣4 ∈ 𝑁𝐶(𝐻3). Then, 𝑣5 ∈ 𝑁𝐶(𝐻2) and 𝑁𝐶 𝐻2 
+ =  𝑣1, 𝑣3 . It implies that 

there exists an edge sequence joining two vertices in 𝑁𝐶 𝐻2 
+, which 

contradicts Lemma 4.1 (b). Therefore, by Claim 5.3,  𝐶 = 6, so 𝐶 =
(𝑣1, 𝑣2 , 𝑣3, 𝑣4 , 𝑣5 , 𝑣6) and by Claim 5.2, 𝑁𝐶 𝐻1 ∩ 𝑁𝐶 𝐻2 = 𝑁𝐶 𝐻2 ∩
𝑁𝐶 𝐻3 = 𝑁𝐶 𝐻1 ∩ 𝑁𝐶 𝐻3 =  ∅. Without loss of generality, by Lemma 

4.1 (a, b) and Claim 5.1, there are two possible case as follow: 

(1) Case 𝑣1, 𝑣3 ∈ 𝑁𝐶(𝐻1), 𝑣2 ∈ 𝑁𝐶(𝐻2), 𝑣4 ∈ 𝑁𝐶(𝐻3). Observe that 

𝑣6 ∈ 𝑁𝐶(𝐻3) and 𝑣5 ∈ 𝑁𝐶(𝐻2). Let 𝑊1,𝑊2, 𝑊3 be the paths in 

𝐻1, 𝐻2, 𝐻3 joining the pair of vertices  𝑣1, 𝑣3 ,  𝑣2, 𝑣5 ,  𝑣4, 𝑣6  
respectively. Then, we have 𝐶′ = (𝑣1𝑊1𝑣3𝑣2𝑊2𝑣5𝑣4𝑊3𝑣6𝑣1) is longer 

than 𝐶, which contradicts the fact that 𝐶 is a longest cycle of 𝐺. 

(2) Case 𝑣1, 𝑣4 ∈ 𝑁𝐶(𝐻1), 𝑣2 ∈ 𝑁𝐶(𝐻2), 𝑣5 ∈ 𝑁𝐶(𝐻3). Observe that 

𝑣6 ∈ 𝑁𝐶(𝐻2) and 𝑣3 ∈ 𝑁𝐶(𝐻3). Let 𝑊1,𝑊2, 𝑊3 be the paths in 

𝐻1, 𝐻2, 𝐻3 joining the pair of vertices  𝑣1, 𝑣4 ,  𝑣2, 𝑣6 ,  𝑣3, 𝑣5  
respectively. The, we have 𝐶′ = (𝑣1𝑊1𝑣4, 𝑣3𝑊3𝑣5 , 𝑣6𝑊2𝑣2, 𝑣1) is 

longer than 𝐶, a contradiction. 

Thus, the case 𝑚 = 3 does not happen. 
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c) 𝑚 = 2. 

Without loss of generality, assume that  𝐻1 +  𝑁𝐶(𝐻1) ≥  𝐻2 +
 𝑁𝐶(𝐻2) . 

Claim 5.4.  𝑁𝐶(𝐻1) = 2. 

Proof. By  𝑁𝐶(𝐻1) ≥ 2, assume to contrary that  𝑁𝐶(𝐻1) ≥ 3. Let 

𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2. By Lemma 4.1 (b) there exists two vertices 𝑣𝑖
+,𝑣𝑗

+ ∈

𝑁𝐶 𝐻1 
+ − 𝑁𝐶(𝐻2). By Lemma 4.1 (a, b), the vertex set  𝑥, 𝑦, 𝑣𝑖

+, 𝑣𝑗
+  is 

independent, so 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≥ 2𝑛. By Lemma 4.1 

(d), 𝑑 𝑥 + 𝑑 𝑣𝑖
+ ≤ 𝑛 − 1. Moreover, 𝑑 𝑦 ≤  𝐻2 − 1 +  𝑁𝐶 𝐻2  ≤

 𝐻1 − 1 +  𝑁𝐶(𝐻1) , 𝑑(𝑣𝑗
+) ≤ 𝑛 −  𝐻1 −  𝑁𝐶(𝐻1) . Therefore 𝑑 𝑥 +

𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≤ 2𝑛 − 2, a contradiction. Thus,  𝑁𝐶(𝐻1) = 2. 

Claim 5.5.  𝑁𝐶(𝐻2) = 2. 

Proof. Assume to contrary that  𝑁𝐶(𝐻2) ≥ 3. Arguing similarly the 

proof of Claim 5.4, there exists two vertices 𝑣𝑖
+, 𝑣𝑗

+ ∈ 𝑁𝐶 𝐻2 
+ −

𝑁𝐶(𝐻1). Let 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2. By Lemma 4.1 (a, b), the vertex set 

 𝑥, 𝑦, 𝑣𝑖
+,𝑣𝑗

+  is independent, so 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≥ 2𝑛. 

By Lemma 4.1 (b) and by 𝑣𝑖
+ ∉ 𝑁(𝐻1) ∪ 𝑁(𝐻2), 𝑑 𝑣𝑖

+ ≤  𝐶 −
 𝑁𝐶(𝐻2) . Moreover, 𝑑 𝑥 ≤  𝐻1 − 1 +  𝑁𝐶 𝐻1  =  𝐻1 + 1, 𝑑 𝑦 ≤
 𝐻2 − 1 +  𝑁𝐶 𝐻2  , 𝑑(𝑣𝑗

+) ≤  𝐶 −  𝑁𝐶 𝐻2  ≤  𝐶 − 2 ≤ 𝑛 − 4. 

Therefore, 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≤  𝐻1 +  𝐻2 +  𝐶 + 𝑛 −

4 = 2𝑛 − 4, a contradiction. Thus,  𝑁𝐶(𝐻2) = 2. 

By arguing similarly above, observe that  𝑁𝐶(𝐻1)+ ∩ 𝑁𝐶(𝐻2) = 1 =
 𝑁𝐶(𝐻2)+ ∩ 𝑁𝐶(𝐻1) . Without loss of generality, we assume that 𝑁𝐶 𝐻2 =
 𝑣𝑖 , 𝑣𝑖

+2 , 𝑁𝐶 𝐻1 =  𝑣𝑗 , 𝑣𝑖
+  with 𝑣𝑗 ≠ 𝑣𝑖

+3 and 𝑣𝑗
+ ≠ 𝑣𝑖 . Because 𝐺 is 2-

connected and 𝐶 is a longest cycle of 𝐺, so  𝐻2 = 1, i.e 𝐻2 =  𝑦 . Let 

𝑥 ∈ 𝐻1 and 𝑊1 be the path in 𝐻1 joining 𝑣𝑖
+ to 𝑣𝑗 . 

 

Figure 4. Illustrating the proofs of part c), Proposition 5.3. 
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If 𝑣𝑖
+3𝑣𝑗

+ ∈ 𝐸(𝐺) then 𝐶′ = (𝑣𝑖𝑦𝑣𝑖
+2𝑣𝑖

+𝑊1𝑣𝑗𝐶     𝑣𝑖
+3𝑣𝑗

+𝐶     𝑣𝑖) is longer than 𝐶, 

a contradiction. Therefore, 𝑣𝑖
+3𝑣𝑗

+ ∉ 𝐸(𝐺) and the vertex set  𝑥, 𝑦, 𝑣𝑖
+3, 𝑣𝑗

+  

is independent, so 𝑑 𝑥 + 𝑑 𝑦 + 𝑑(𝑣𝑖
+3) + 𝑑(𝑣𝑗

+) ≥ 2𝑛. However, by 

Lemma 4.1 (d), 𝑑 𝑦 + 𝑑(𝑣𝑖
+3) ≤ 𝑛 − 1 and  𝑥 + 𝑑(𝑣𝑗

+) ≤ 𝑛 − 1, it 

implies that 𝑑 𝑥 + 𝑑 𝑦 + 𝑑(𝑣𝑖
+3) + 𝑑(𝑣𝑗

+) ≤ 2𝑛 − 2, a contradiction. 

Thus, the case 𝑚 = 2 does not happen. 

By these case a), b), c) do not happen, we finish the proof that 𝑚 = 1. Then 

𝐺 − 𝐶 has only one connected component. For what follows, let 𝐻 be the 

connected component of 𝐺 − 𝐶. The fact that  𝐻 = 𝐺 − 𝐶. By Proposition 

5.1, 𝐻 is complete. 

Proposition 5.4.  𝑁𝐶(𝐻) = 2. 

Proof. Clearly,   𝑁𝐶(𝐻) ≥ 2 by 𝐺 is 2-connected. Assume that  𝑁𝐶(𝐻) ≥

3. For any two vertices 𝑣𝑖 , 𝑣𝑗 ∈ 𝑁𝐶 𝐻 , let 𝑣𝑘 ∈ 𝑁𝐶 𝐻 −  𝑣𝑖 , 𝑣𝑗   and 𝑥 ∈

𝐻, then by Lemma 4.1 (b) the vertex set  𝑥, 𝑣𝑖
+, 𝑣𝑗

+,𝑣𝑘
+  is independent. So 

𝑑 𝑥 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) + 𝑑(𝑣𝑘
+) ≥ 2𝑛. However, by Lemma 4.1 (d), 

 𝑥 + 𝑑 𝑣𝑘
+ ≤ 𝑛 − 1, it implies that 𝑑 𝑣𝑖

+ + 𝑑(𝑣𝑗
+) ≥ 𝑛 + 1. 

By 𝐺 is 2-connected and 𝐻 is complete, there exists two vertices 𝑣𝑖0
, 𝑣𝑗0

∈

𝑁𝐶(𝐻) and a hamiltonian path 𝑊 in 𝐻 joining 𝑣𝑖0
 to 𝑣𝑗0

. Then 𝐶′ =

(𝑣𝑖0
𝑊𝑣𝑗0

𝐶     𝑣𝑖0

+𝑣𝑗0

+𝐶     𝑣𝑖0
) is a hamiltonian cycle of graph 𝐺 ′ = 𝐺 + 𝑣𝑖0

+𝑣𝑗0

+, i.e. 

𝐺′ is hamiltonian. By Lemma 4.2, 𝐺 is hamiltonian if and only if 𝐺 ′  is 

hamiltonian, therefore 𝐺 is hamiltonian, which contradicts to the assumption 

that 𝐺 is nonhamiltonian. Thus,  𝑁𝐶(𝐻) = 2. 

For what follows, let 𝑣𝑖 , 𝑣𝑗  be two vertices of 𝑁𝐶(𝐻) and let 𝑊 be the 

hamiltonian path of 𝐻 joining 𝑣𝑖 , 𝑣𝑗 . 

Proposition 5.5. 𝑁 𝑣𝑖
+ ∪ 𝑁(𝑣𝑗

+) = 𝐶 −  𝑣𝑖
+, 𝑣𝑗

+ . 

Proof. Assume to the contrary that there exists 𝑣𝑘 ∈ 𝐶 −  𝑣𝑖
+, 𝑣𝑗

+  such that 

𝑣𝑘 ∉ 𝑁(𝑣𝑖
+) ∪ 𝑁(𝑣𝑗

+). Clearly, 𝑣𝑘 ∉  𝑣𝑖 , 𝑣𝑗  . Let 𝑥 ∈ 𝐻,  then by Lemma 

4.1 (b), the vertex set  𝑥, 𝑣𝑖
+, 𝑣𝑗

+, 𝑣𝑘  is independent, so 𝑑 𝑥 + 𝑑 𝑣𝑖
+ +

𝑑(𝑣𝑗
+) + 𝑑(𝑣𝑘) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 𝑑 𝑣𝑘 ≤  𝐶 − 3, it 

implies that 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑗

+) ≥ 2𝑛 −  𝐻 −  𝐶 + 2 = 𝑛 + 2. Therefore, by 

Lemma 4.2, 𝐺 is hamiltonian if and only if 𝐺 ′ = 𝐺 + 𝑣𝑖
+𝑣𝑗

+ is hamiltonian. 

Observe that 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝐶     𝑣𝑖
+𝑣𝑗

+𝐶     𝑣𝑖) is a hamiltonian cycle of 𝐺′, i.e 𝐺′ 

is hamiltonian, it implies that 𝐺 is hamiltonian, a contradiction. 
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Now we consider two case of toughness of 𝐺. 

I. 𝑮 is not 1-tough 

By 𝐺 is not 1-tough, there exists a vertex set 𝑆 ≠ ∅ such that 𝐺 − 𝑆 has at 

least  S + 1 connected components. By 𝐺 is 2-connected,  𝑆 ≥ 2. Since 

𝑛 −  𝑆 ≥ 𝜔 𝐺 − 𝑆 ≥  𝑆 + 1 so 2 𝑆 ≤ 𝑛 − 1. 

Claim 5.6. 𝑆 ∩ 𝐻 = ∅. 

Proof. Observe that 𝐺 − 𝐻 = 𝐶 is 1-tough, if 𝐻 − 𝑆 = ∅ then 𝜔 𝐺 −
𝑆 = 𝜔 𝐶 − 𝑆 ≤  𝑆 , which contradicts to the fact that 𝜔 𝐺 − 𝑆 ≥
 𝑆 + 1. Therefore, 𝐻 − 𝑆 ≠ ∅. Let 𝑆 ∩ 𝐻 = 𝑆𝐻 , 𝑆 ∩ 𝐶 = 𝑆𝐶 . If  𝑆𝐻 ≥ 1 

then 𝜔 𝐺 − 𝑆 ≤ 1 + 𝜔 𝐶 − 𝑆𝐶 ≤ 1 +  𝑆𝐶 ≤  𝑆 , a contradiction. 

Thus,  𝑆𝐻 = 0, i.e 𝑆 ∩ 𝐻 = ∅. 

Observe that 𝑣𝑖 , 𝑣𝑗 ∈ 𝑆, otherwise 𝜔 𝐺 − 𝑆 ≤ 𝜔(𝐶 − 𝑆) ≤  𝑆 , a 

contradiction. Therefore, 𝐻 is a connected component of 𝐺 − 𝑆. Let 

𝐻, 𝑇1, 𝑇2, … , 𝑇𝑘  (𝑘 ≥  𝑆 ) be the connected components of 𝐺 − 𝑆. 

Claim 5.7. 𝑘 =  𝑆 = 2 

Proof. Assume that 𝑘 ≥ 3. Let 𝑥 ∈ 𝐻, 𝑦1 ∈ 𝑇1, 𝑦2 ∈ 𝑇2, 𝑦3 ∈ 𝑇3, then the 

vertex set  𝑥, 𝑦1, 𝑦2, 𝑦3  is independent, so 𝑑 𝑥 + 𝑑 𝑦1 + 𝑑 𝑦2 +
𝑑(𝑦3) ≥ 2𝑛. Observe that 𝑑 𝑥 ≤  𝐻 + 1 and 𝑑 𝑦𝑖 ≤  𝑇𝑖 − 1 +  𝑆  
for any 𝑖 = 1, 2, 3. Therefore, 𝑑 𝑥 + 𝑑 𝑦1 + 𝑑 𝑦2 + 𝑑 𝑦3 ≤  𝐻 +
 𝑇1 +  𝑇2 +  𝑇3 + 3 𝑆 − 2 ≤ 2 𝑆 − 2 +  𝑛 − 𝑘 + 3 = 2 𝑆 + 𝑛 −
𝑘 + 1. It implies that 2 𝑆 + 𝑛 − 𝑘 + 1 ≥ 2𝑛, i.e 2 𝑆 ≥ 𝑛 + 𝑘 − 1 ≥
𝑛 + 2 (by 𝑘 ≥ 3), which contradicts to the fact that 2 S ≤ n − 1. 

Therefore k ≤ 2. By 𝑘 ≥  𝑆 ≥ 2, we have 𝑘 =  𝑆 = 2. 

By Claim 5.7 and by 𝑣𝑖 , 𝑣𝑗 ∈ 𝑆 we have 𝑆 =  𝑣𝑖 , 𝑣𝑗   and 𝐺 − 𝑆 has three 

connected components, such as 𝐻, 𝑇1, 𝑇2. By Proposition 5.5, 𝑇1 = ( 𝑣𝑖
+ ∪

𝑁 𝑣𝑖
+ −  𝑣𝑖 , 𝑣𝑗   and 𝑇2 = ( 𝑣𝑗

+ ∪ 𝑁(𝑣𝑗
+) −  𝑣𝑖 , 𝑣𝑗  . 

Claim 5.8. 𝑇1, 𝑇2 is complete. 

Proof. Assume that 𝑇1 is not complete. Then there exists pair of 

nonadjacent vertices 𝑦, 𝑧 ∈ 𝑇1. Let 𝑥 ∈ 𝐻, then the vertex set  𝑥, 𝑦, 𝑧, 𝑣𝑗
+  

is independent, so 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑(𝑣𝑗
+) ≥ 2𝑛. However, 

𝑑 𝑥 ≤  𝐻 + 1, 𝑑(𝑣𝑗
+) ≤  𝑇2 + 1, 𝑑(𝑦) ≤  𝑇1 , 𝑑(𝑧) ≤  𝑇1 . Therefore 

𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑(𝑣𝑗
+) ≤  𝐻 + 2 𝑇1 +  𝑇2 + 2 = 𝑛 +  𝑇1 . It 

implies that 𝑛 +  𝑇1 ≥ 2𝑛, i.e  𝑇1 ≥ 𝑛, a contradiction. Thus, 𝑇1 is 

complete. Similarly, we have 𝑇2 is complete. 
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Figure 5. Graph 𝑮 belongs to class 𝓕𝟏.  

Clearly, 3 ≤ 𝛼(𝐺) ≤ 5. If 𝛼 𝐺 ≥ 4, there exists a independent set of four 

vertices, whose elements are 𝑥 ∈ 𝐻, 𝑦 ∈ 𝑇1, 𝑧 ∈ 𝑇2 and a vertex in S 

(without loss of generality, assume that the vertex in 𝑆 is 𝑣𝑖). By 𝜎4 ≥ 2𝑛, 

we have 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 + 𝑑 𝑣𝑖 ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 

𝑑 𝑣𝑖 ≤ 𝑛 − 4, 𝑑(𝑦) ≤  𝑇1 , 𝑑(𝑧) ≤  𝑇2 . It implies that 𝑑 𝑥 + 𝑑 𝑦 +
𝑑 𝑧 + 𝑑 𝑣𝑖 ≤  𝐻 +  𝑇1 +  𝑇2 + 𝑛 − 3 = 2𝑛 − 5, a contradiction. Thus, 

𝛼 𝐺 = 3. 

Conclude that in this Case 𝐺 is not 1-tough, 𝐺 belongs to class ℱ1. 

II. 𝑮 is 1-tough 

Let 𝑃1 = 𝑁 𝑣𝑖
+ ∪  𝑣𝑖

+ , 𝑃2 = 𝑁(𝑣𝑗
+) ∪  𝑣𝑗

+ . By Lemma 4.1 (c) and Proposition 

5.5, we have 𝑃1 , 𝑃2 are two paths on 𝐶 satisfying  𝑣𝑖 , 𝑣𝑖
+,𝑣𝑖

+2 ⊆ 𝑃1, 

 𝑣𝑗 , 𝑣𝑗
+,𝑣𝑗

+2 ⊆ 𝑃2, 𝑃1 ∪ 𝑃2 = 𝐶 and if 𝑣 ∈ 𝑃1 ∩  𝑃2 then 𝑣 is an end vertex of both 

𝑃1 ,𝑃2. 

Let 𝐴1 = 𝑃1 −  𝑣𝑖 , 𝐴2 = 𝑃2 −  𝑣𝑗  . Clearly,  𝐴1 ∩ 𝐴2 ≤ 2. We consider three 

case of  𝐴1 ∩ 𝐴2 . 

Case 1. 𝐴1 ∩ 𝐴2 = ∅. 

 

Figure 6. Illustrating the Case 1. 
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Observe that there exists an edge joining a vertex 𝑣𝑘 ∈ 𝐴1 to a vertex 

𝑣𝑡 ∈ 𝐴2, otherwise 𝜔 𝐺 −  𝑣𝑖 , 𝑣𝑗   = 3, which contradicts to the fact that 𝐺 

is 1-tough. 

If there exists pair of nonadjacent vertices 𝑣𝑖1
, 𝑣𝑖2

∈ 𝐴1, let 𝑥 ∈ 𝐻, then the 

vertex set  𝑥, 𝑣𝑖1
,𝑣𝑖2

,𝑣𝑗
+  is independent, so 𝑑 𝑥 + 𝑑(𝑣𝑖1

) + 𝑑(𝑣𝑖2
) +

𝑑(𝑣𝑗
+) ≥ 2𝑛. By Lemma 4.1 (d), 𝑑 𝑥 + 𝑑(𝑣𝑗

+) ≤ 𝑛 − 1, we have 𝑑(𝑣𝑖1
) +

𝑑(𝑣𝑖2
) ≥ 𝑛 + 1. By Lemma 4.2, 𝐺 is hamiltonian if and only if 𝐺 ′ = 𝐺 +

𝑣𝑖1
𝑣𝑖2

 is hamiltonian. 

Arguing similarly, for any pair of nonadjacent vertices 𝑣𝑗1
, 𝑣𝑗2

∈ 𝐴2, we 

have 𝑑(𝑣𝑗1
) + 𝑑(𝑣𝑗2

) ≥ 𝑛 + 1 and 𝐺 is hamiltonian if and only if 𝐺 ′′ = 𝐺 +

𝑣𝑗1
𝑣𝑗2

 is hamiltonian. 

Let 𝐺∗ be the graph obtain from 𝐺 by adding new edges joining all pair of 

nonadjacent vertices in the same set 𝐴1, respectively in A2. By Lemma 4.3, 

𝐺 is hamiltonian if and only if 𝐺∗ is hamiltonian. We consider graph 𝐺∗, 

let 𝑊1 be the hamiltonian path of 𝐴1 joining  𝑣𝑖
+ to 𝑣𝑘 , and let 𝑊2 be the 

hamiltonian path of 𝐴2 joining 𝑣𝑡  to 𝑣𝑗
+. Then, we have 

𝐶′ = (𝑣𝑖𝑣𝑖
+𝑊1𝑣𝑘𝑣𝑡𝑊2𝑣𝑗

+𝑣𝑗𝑊𝑣𝑖) is a hamiltonian cycle in 𝐺∗, i.e 𝐺∗ is 

hamiltonian. Therefore, 𝐺 is hamiltonian, a contradiction. 

Thus, the Case 1 does not happen. 

Case 2.  𝐴1 ∩ 𝐴2 = 1. 

Let 𝐴1 ∩ 𝐴2 =  𝑣𝑘 . Without loss of generality, assume that 𝑣𝑘 ∈ 𝑣𝑖
+2𝐶     𝑣𝑗

− 

(𝑣𝑖
+2 ≠ 𝑣𝑗 ). 

 

Figure 7. Illustrating the Case 2. 

Case 2.1. 𝑣𝑘 ≡ 𝑣𝑖
+2. 

If  𝐻 > 1 then 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝐶     𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖) is longer than 𝐶. Therefore, 

 𝐻 = 1, let 𝐻 =  𝑥 . If 𝑣𝑖
− ∈ 𝑁(𝑣𝑖

+) then 𝐶′ = (𝑣𝑖𝑥𝑣𝑗𝐶     𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑖
+𝑣𝑖) is 

a hamiltonian cycle in 𝐺 a contradiction. Therefore, 𝑣𝑖
− ∉ 𝑁(𝑣𝑖

+), and by 

Proposition 5.5, 𝑣𝑖
− ∈ 𝑁(𝑣𝑗

+) and 𝑑 𝑣𝑖
+ = 2. 
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We consider subgraph 𝐵2 = 𝐴2 −  𝑣𝑘 = 𝑣𝑘𝐶     𝑣𝑖
− −  𝑣𝑘 , 𝑣𝑗  . If there exists 

pair of nonadjacent vertices 𝑣𝑡1
, 𝑣𝑡2

∈ 𝐵2 then the vertex set  𝑥, 𝑣𝑖
+, 𝑣𝑡1

, 𝑣𝑡2
  

is independent, so 𝑑 𝑥 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≥ 2𝑛. However, 

𝑑 𝑥 = 𝑑 𝑣𝑖
+ = 2 and 𝑑(𝑣𝑡1

),𝑑(𝑣𝑡2
) ≤  𝐶 − 3 = 𝑛 − 4, therefore 

𝑑 𝑥 + 𝑑 𝑣𝑖
+ + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≤ 2𝑛 − 4, a contradiction. Thus, 𝐵2 is 

complete. 

If 𝑣𝑗
− ≠ 𝑣𝑘  then 𝑣𝑖

−, 𝑣𝑗
− ∈ 𝐵2, so 𝑣𝑖

−𝑣𝑗
− ∈ 𝐸(𝐺), which contradicts to 

Lemma 4.1 (b). Therefore 𝑣𝑗
− ≡ 𝑣𝑘 . 

Because 𝐺 is 1-tough, nonhamiltonian, so 𝑛 ≥ 7 and 𝑣𝑖
− ≠ 𝑣𝑗

+. If there 

exists a vertex 𝑣𝑡 ∈ 𝑣𝑗
+2𝐶     𝑣𝑖

− is adjacent to 𝑣𝑗  then we have 𝐶′ =

(𝑣𝑖𝑥𝑣𝑗𝑣𝑡𝐶     𝑣𝑖
−𝑣𝑡

−𝐶     𝑣𝑗
+𝑣𝑘𝑣𝑖

+𝑣𝑖) is a hamiltonian cycle in 𝐺, a contradiction. 

Therefore, 𝑣𝑗  is not adjacent to all vertices in 𝑣𝑗
+2𝐶     𝑣𝑖

−.  

Similarly, if there exists a vertex 𝑣𝑡 ∈ 𝑣𝑗
+2𝐶     𝑣𝑖

− is adjacent to 𝑣𝑘  then we 

have 𝐶′ = (𝑣𝑖𝑥𝑣𝑗𝐶     𝑣𝑡
−𝑣𝑖

−𝐶     𝑣𝑡𝑣𝑘𝑣𝑖
+𝑣𝑖) is a hamiltonian cycle in 𝐺, a 

contradiction. Therefore, 𝑣𝑘  is not adjacent to all vertices in 𝑣𝑗
+2𝐶     𝑣𝑖

−. 

Conclude that the graph 𝐺 is shown in Figure 8, 𝑣𝑖  can possibly be adjacent 

to another vertices: 

 

Figure 8. Graph 𝑮 belongs to class 𝓕𝟐. 

Clearly, 𝛼 𝐺 = 3 and 𝐺 belongs to class ℱ2. 

Case 2.2. 𝑣𝑘 ≠ 𝑣𝑖
+2 and 𝑣𝑘 ≡ 𝑣𝑗

−. 

Clearly, 𝑣𝑘
− ≠ 𝑣𝑖

+. If 𝑣𝑖
−𝑣𝑘

− ∈ 𝐸(𝐺), then 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑘
−𝐶     𝑣𝑖) is 

a hamiltonian cycle of 𝐺, a contradiction. Therefore, 𝑣𝑖
−𝑣𝑘

− ∉ 𝐸(𝐺). By 

𝑣𝑘 ≡ 𝑣𝑗
− and by Lemma 4.1 (b), 𝑣𝑖

−𝑣𝑘 ∉ 𝐸(𝐺), so 𝑣𝑖
− ≠ 𝑣𝑗

+ by 𝑣𝑘 ∈ 𝑁(𝑣𝑗
+). 

We have the following Claims. 

Claim 5.9. 𝑣𝑖
− ∈ 𝐴2 − 𝐴1. 

Proof. Assume that 𝑣𝑖
− ∈ 𝐴1. Let 𝑥 ∈ 𝐻, then the vertex set 

 𝑥, 𝑣𝑗
+, 𝑣𝑖

−, 𝑣𝑘
−  is independent, so 𝑑 𝑥 + 𝑑(𝑣𝑗

+) + 𝑑(𝑣𝑖
−) + 𝑑(𝑣𝑘

−) ≥



International Journal of Computer Science and Business Informatics 
 
 

 
IJCSBI.ORG 

  ISSN: 1694-2108 | Vol. 15, No. 2. MARCH 2015 53 

 

 

2𝑛. By Lemma 4.1 (d), 𝑑 𝑥 + 𝑑(𝑣𝑗
+) ≤ 𝑛 − 1 and 𝑑 𝑣𝑖

− + 𝑑 𝑣𝑘
− ≥

𝑛 + 1. Therefore, by Lemma 4.2, 𝐺 is hamiltonian if and only if 𝐺 ′ =

𝐺 + 𝑣𝑖
−𝑣𝑘

− is hamiltonian. Observe that 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑘
−𝐶     𝑣𝑖) 

is a hamiltonian cycle of 𝐺′, so 𝐺 ′  and 𝐺 are hamiltonian, a contradiction. 

Thus, 𝑣𝑖
− ∉ 𝐴1, and by 𝑃1 ∪ 𝑃2 = 𝐶 we have 𝑣𝑖

− ∈ 𝐴2 − 𝐴1. 

 

Figure 9. Illustrating the Claim 5.9. 

Let 𝐵1 = 𝐴1 −  𝑣𝑘 = 𝑣𝑖
+𝐶     𝑣𝑘

−, 𝐵2 = 𝐴2 −  𝑣𝑘 = 𝑣𝑗
+𝐶     𝑣𝑖

−. By 𝑣𝑖
− ≠ 𝑣𝑗

+ 

and by 𝑣𝑘
− ≠ 𝑣𝑖

+ we have  𝐵1 ,  𝐵2 ≥ 2. Arguing similarly, for any pair of 

nonadjacent vertices (𝑦, 𝑧) in the same set 𝐵1, respectively in 𝐵2, we have 

𝑑 𝑦 + 𝑑(𝑧) ≥ 𝑛 + 1. 

Claim 5.10. There are no edges joining a vertex in 𝐵1 to a vertex in 𝐵2. 

Proof. Assume to the contrary that there exists an edge joining 𝑣𝑡1
∈ 𝐵1 

to 𝑣𝑡2
∈ 𝐵2. Clearly, 𝑣𝑡1

≠ 𝑣𝑖
+, 𝑣𝑡2

≠ 𝑣𝑗
+. Let 𝐺∗ be the graph obtain 

from 𝐺 by adding new edges joining  all pair of nonadjacent vertices in 

the same set 𝐵1, respectively in 𝐵2. By Lemma 4.3, 𝐺 is hamiltonian if 

and only if 𝐺∗ is hamiltonian. 

We consider graph 𝐺∗, observe that 𝐵1,𝐵2 are complete. Let 𝑊1 be the 

hamiltonian path in 𝐵1 joining 𝑣𝑡1
 to 𝑣𝑖

+ and let 𝑊2 be the path in 𝐵2 

joining 𝑣𝑗
+ to 𝑣𝑡2

. Then, 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑗
+𝑊2𝑣𝑡2

𝑣𝑡1
𝑊1𝑣𝑖

+𝑣𝑖) is a 

hamiltonian cycle of 𝐺∗, i.e 𝐺∗ is hamiltonian, it implies that 𝐺 is 

hamiltonian, a contradiction. 

Claim 5.11. 𝐵1, 𝐵2 are complete. 

Proof. Assume that there exists a pair of nonadjacent vertices 𝑣𝑖1
,𝑣𝑖2

∈

𝐵1. Let 𝑥 ∈ 𝐻, then the vertex set  𝑥, 𝑣𝑖1
, 𝑣𝑖2

,𝑣𝑗
+  is independent, so 

𝑑 𝑥 + 𝑑(𝑣𝑖1
) + 𝑑(𝑣𝑖2

) + 𝑑(𝑣𝑗
+) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 

𝑑(𝑣𝑗
+) ≤  𝐵2 + 2 and 𝑑(𝑣𝑖1

),𝑑(𝑣𝑖2
) ≤  𝐵1 + 1, therefore 𝑑 𝑥 +

𝑑(𝑣𝑖1
) + 𝑑(𝑣𝑖2

) + 𝑑(𝑣𝑗
+) ≤  𝐻 + 2 𝐵1 +  𝐵2 + 5 = 𝑛 +  𝐵1 + 2. It 

implies that  𝐵1 ≥ 𝑛 − 2, a contradiction. Thus, 𝐵1 is complete. 

Similarly, we have 𝐵2 is complete. 

Claim 5.12. 𝑣𝑘 , 𝑣𝑗  are not adjacent to any vertex in 𝐵2 −  𝑣𝑗
+ . 
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Proof. Assume that 𝑣𝑘  is adjacent to a vertex 𝑣𝑝 ∈ 𝐵2 −  𝑣𝑗
+ . By Claim 

5.11, let 𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑘
− to 𝑣𝑖

+, and let 𝑊2 

be the hamiltonian path of 𝐵2 joining 𝑣𝑗
+ to 𝑣𝑝 . Then, 

𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑊2𝑣𝑝𝑣𝑘𝑣𝑘

−𝑊1𝑣𝑖
+𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. Similarly, if 𝑣𝑗  is adjacent to a vertex 𝑣𝑞 ∈ 𝐵2 −  𝑣𝑗
+ , let 

𝑊2
∗ be the hamiltonian path of 𝐵2 joining 𝑣𝑞  to 𝑣𝑗

+, then 𝐶′ =

(𝑣𝑖𝑊𝑣𝑗𝑣𝑞𝑊2
∗𝑣𝑗

+𝑣𝑘𝑣𝑘
−𝑊1𝑣𝑖

+𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. Thus, 𝑣𝑘 , 𝑣𝑗  are not adjacent to any vertex in 𝐵2 −  𝑣𝑗
+ . 

Claim 5.13. 𝑣𝑗  is not adjacent to any vertex in 𝐵1. 

Proof. Assume to the contrary that 𝑣𝑗  is adjacent to a vertex 𝑣𝑝 ∈ 𝐵1. Let 

𝑊2 be the hamiltonian path of 𝐵2 joining 𝑣𝑗
+ to 𝑣𝑖

−. It happens as one of  

two following case: 

(1) Case 𝑣𝑝 ≠ 𝑣𝑖
+: Let 𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑝  to 𝑣𝑖

+, 

we have 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑝𝑊1𝑣𝑖
+𝑣𝑘𝑣𝑗

+𝑊2𝑣𝑖
−𝑣𝑖) is a hamiltonian cycle 

of 𝐺, a contradiction. 

(2) Case 𝑣𝑝 ≡ 𝑣𝑖
+: Let 𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑝  to 𝑣𝑘

−, 

we have 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑝𝑊1𝑣𝑘
−𝑣𝑘𝑣𝑗

+𝑊2𝑣𝑖
−𝑣𝑖) is a hamiltonian cycle 

of 𝐺, a contradiction. 

Claim 5.14. 𝑣𝑗  is adjacent to all vertices in 𝐻. 

Proof. Assume to the contrary that 𝑣𝑗  is not adjacent to a vertex 𝑥 ∈ 𝐻. 

Let 𝑣𝑡1
∈ 𝐵1, 𝑣𝑡2

∈ 𝐵2 −  𝑣𝑗
+ , then by Claims 5.10, 5.12, 5.13, the 

vertex set  𝑥, 𝑣𝑗 , 𝑣𝑡1
, 𝑣𝑡2

  is independent, so 𝑑 𝑥 + 𝑑(𝑣𝑗 ) + 𝑑(𝑣𝑡1
) +

𝑑(𝑣𝑡2
) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 , 𝑑(𝑣𝑗 ) ≤  𝐻 + 2, 𝑑(𝑣𝑡1

) ≤  𝐵1 +

1, 𝑑(𝑣𝑡2
) ≤  𝐵2 . Therefore, 2𝑛 ≤ 𝑑 𝑥 + 𝑑(𝑣𝑗 ) + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≤

2 𝐻 +  𝐵1 +  𝐵2 + 3 = 𝑛 +  𝐻 , it implies that  𝐻 ≥ 𝑛, a 

contradiction. 

Claim 5.15. 𝑣𝑘  is adjacent to all vertices in 𝐵1. 

Proof. Assume to the contrary that 𝑣𝑘  is not a vertex 𝑣𝑡1
∈ 𝐵1. Let 𝑥 ∈ 𝐻 

and 𝑣𝑡2
∈ 𝐵2 −  𝑣𝑗

+ . Then by Claim 5.10 and by Claim 5.12, the vertex 

set  𝑥, 𝑣𝑘 , 𝑣𝑡1
, 𝑣𝑡2

  is independent, so 𝑑 𝑥 + 𝑑(𝑣𝑘) + 𝑑(𝑣𝑡1
) +

𝑑(𝑣𝑡2
) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 𝑑 𝑣𝑘 ≤  𝐵1 + 2, 𝑑(𝑣𝑡1

) ≤

 𝐵1 , 𝑑(𝑣𝑡2
) ≤  𝐵2 . Therefore, 𝑑 𝑥 + 𝑑(𝑣𝑘) + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≤

 𝐻 + 2 𝐵1 +  𝐵2 + 3 = 𝑛 +  𝐵1 , it implies that  𝐵1 ≥ 𝑛, a 

contradiction. 

Let 𝐻1 = 𝐻 +  𝑣𝑗  , by Claim 5.14, 𝐻1 is complete. By Claim 5.15, 𝐴1 =

𝐵1 +  𝑣𝑘  is complete. The graph 𝐺 is shown in Figure 10, in which, 
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𝐻1, 𝐴1, 𝐵2 are complete and  𝐻1 ,  𝐴1 ,  𝐵2 ≥ 2. Moreover, the vertex 𝑣𝑖  can 

possibly be adjacent to another vertices. 

 

Figure 10. Graph 𝑮 belongs to class 𝓕𝟐.  

Clearly, 3 ≤ 𝛼(𝐺) ≤ 4. If 𝛼 𝐺 = 4, then there exists 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐴1 , 𝑧 ∈
𝐵2 such that the vertex set  𝑥, 𝑦, 𝑧, 𝑣𝑖  is independent, so 𝑑 𝑥 + 𝑑 𝑦 +
𝑑 𝑧 + 𝑑(𝑣𝑖) ≥ 2𝑛. However, 𝑑 𝑥 + 𝑑 𝑦 + 𝑑 𝑧 ≤  𝐻1 +  𝐴1 +  𝐴2 −
1 = 𝑛 − 2, therefore 𝑑 𝑣𝑖 ≥ 𝑛 + 2, a contradiction. Thus 𝛼 𝐺 = 3. 

Conclude that in this Case 2.2, 𝐺 belongs to class ℱ2. 

Case 2.3. 𝑣𝑘 ≠ 𝑣𝑖
+2 and 𝑣𝑘 ≠ 𝑣𝑗

−.  

Arguing similarly the proofs of Case 2.2, let 𝐵1 = 𝐴1 −  𝑣𝑘  and 𝐵2 = 𝐴2 −
 𝑣𝑘 , then for any pair of nonadjacent vertices (𝑦, 𝑧) together in  𝐵1 or 𝐵2, 

we have 𝑑 𝑦 + 𝑑(𝑧) ≥ 𝑛 + 1. Observe that 𝑣𝑖
+ ≠ 𝑣𝑘

− ∈ 𝐵1 and 𝑣𝑗 , 𝑣𝑗
+ ≠

𝑣𝑘
+ ∈ 𝐵2. 

Let 𝐺∗ be the graph obtain from 𝐺 by adding new edges joining all pair of 

nonadjacent vertices in the same set 𝐵1, respectively in 𝐵2. By Lemma 4.3, 

𝐺 is hamiltonian if and only if 𝐺∗ is hamiltonian. We consider graph 𝐺∗, let 

𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑘
− to 𝑣𝑖

+, and let 𝑊2 be the 

hamiltonian path of  𝐵2 joining 𝑣𝑗
+ to 𝑣𝑘

+. Then, we have 

𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑊2𝑣𝑘

+𝑣𝑘𝑣𝑘
−𝑊1𝑣𝑖

+𝑣𝑖) is a hamiltonian cycle of 𝐺∗, i.e 𝐺∗ is 

hamiltonian. Therefore, 𝐺 is hamiltonian, a contradiction. 

Thus, the Case 2.3 does not happen. 

Case 3.  𝐴1 ∩ 𝐴2 = 2. 

Let 𝐴1 ∩ 𝐴2 =  𝑣𝑘 , 𝑣𝑡 . Without loss of generality, we assume that 𝑣𝑘 ∈

𝑣𝑖
+2𝐶     𝑣𝑗

− (𝑣𝑖
+2 ≠ 𝑣𝑗 ) and 𝑣𝑡 ∈ 𝑣𝑗

+2𝐶     𝑣𝑖
− (𝑣𝑗

+2 ≠ 𝑣𝑖). Let 𝐵1 = 𝐴1 −  𝑣𝑘 , 𝑣𝑡 , 

𝐵2 = 𝐴2 −  𝑣𝑘 , 𝑣𝑡 . Arguing similarly the proofs of Case 2.2, for any pair of 

nonadjacent vertices (𝑦, 𝑧) in the same set 𝐵1, respectively in 𝐵2, we get 

𝑑 𝑦 + 𝑑(𝑧) ≥ 𝑛 + 1. 
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Figure 11. Illustrating the Case 3. 

Case 3.1. 𝑣𝑘 ≡ 𝑣𝑖
+2 or 𝑣𝑡 ≡ 𝑣𝑗

+2. 

Without loss of generality, assume that 𝑣𝑘 ≡ 𝑣𝑖
+2. If 𝑣𝑖

− ∈ 𝑁(𝑣𝑖
+) then  we 

have 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝐶     𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑖
+𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. Therefore 𝑣𝑖
− ∉ 𝑁(𝑣𝑖

+), i.e 𝑣𝑖
− ∉ 𝐴1 and 𝑣𝑖

− ∈ 𝐴2. It implies 

that there is no vertex 𝑣𝑡 ∈ 𝑣𝑗
+2𝐶     𝑣𝑖

− such that 𝑣𝑡 ∈ 𝐴1 ∩ 𝐴2, a 

contradiction. 

Thus, the Case 3.1 does not happen. 

Case 3.2. (𝑣𝑘 ≠ 𝑣𝑖
+2 and 𝑣𝑘 ≡ 𝑣𝑗

−) or (𝑣𝑡 ≠ 𝑣𝑗
+2 and 𝑣𝑡 ≡ 𝑣𝑖

−).  

Without loss of generality, assume that 𝑣𝑘 ≠ 𝑣𝑖
+2 and 𝑣𝑘 ≡ 𝑣𝑗

−. We have the 

following Claims: 

Claim 5.16. 𝑣𝑡 ≡ 𝑣𝑖
−. 

Proof. Assume to the contrary that 𝑣𝑡 ≠ 𝑣𝑖
−. Arguing similarly the proofs 

of Case 2.2, we have 𝑣𝑖
−𝑣𝑘

− ∉ 𝐸(𝐺) and 𝑑 𝑣𝑖
− + 𝑑 𝑣𝑘

− ≥ 𝑛 + 1. By 

Lemma 4.2, 𝐺 is hamiltonian if and only if 𝐺 ′ = 𝐺 + 𝑣𝑖
−𝑣𝑘

− is 

hamiltonian. Observe that 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑘
−𝐶     𝑣𝑖) is a 

hamiltonian cycle of 𝐺′, i.e 𝐺′ is hamiltoniania. It implies that 𝐺 is 

hamiltonian, a contradiction. 

Claim 5.17.  𝐵1 ,  𝐵2 ≥ 2. Moreover, 𝑣𝑖
−2 ∈ 𝐵2 − {𝑣𝑗

+}. 

Proof. Because of 𝑣𝑖
+, 𝑣𝑘

− ∈ 𝐵1, so  𝐵1 ≥ 2. If 𝑣𝑖
−2 ≡ 𝑣𝑗

+, then 𝐶′ =

(𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑣𝑘𝐶     𝑣𝑖

+𝑣𝑖
−𝑣𝑖) is a hamiltonian cycle of 𝐺, a contradiction. 

Therefore,  𝑣𝑖
−2 ≠ 𝑣𝑗

+. By Claim 5.16 we have 𝑣𝑖
−2 ∈ 𝐵2 − {𝑣𝑗

+} and 

 𝐵2 ≥ 2. 

Claim 5.18. There are no edges joining a vertex in 𝐵1 to a vertex in 𝐵2. 

Proof. Assume to the contrary that there exists 𝑣𝑡1
∈ 𝐵1, 𝑣𝑡2

∈ 𝐵2 such 

that 𝑣𝑡1
𝑣𝑡2

∈ 𝐸(𝐺). Observe that 𝑣𝑡1
≠ 𝑣𝑖

+ and 𝑣𝑡2
≠ 𝑣𝑗

+. Let 𝐺∗ be the 

graph obtain from 𝐺 by adding new edges joining all pair of nonadjacent 
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vertices in the same set 𝐵1, respectively in 𝐵2 (note that their degree sum 

is greater than 𝑛 + 1). By Lemma 4.3, 𝐺 is hamiltonian if and only if 𝐺∗ 

is hamiltonian. We consider the graph 𝐺∗, let 𝑊1 be the hamiltonian path 

of 𝐵1 joining 𝑣𝑖
+ to 𝑣𝑡1

, and let 𝑊2 be the hamiltonian path of 𝐵2 joining 

𝑣𝑡2
 to 𝑣𝑗

+. Then 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑖
+𝑊1𝑣𝑡1

𝑣𝑡2
𝑊2𝑣𝑗

+𝑣𝑖
−𝑣𝑖) is a hamiltonian 

cycle of 𝐺∗, i.e 𝐺∗ is hamiltonian. It implies that 𝐺 is hamiltonian, a 

contradiction. 

Claim 5.19. 𝐵1, 𝐵2 are complete. 

Proof. Assume that there exists a pair of nonadjacent vertices 𝑣𝑝 , 𝑣𝑞 ∈

𝐵1. Let 𝑥 ∈ 𝐻, then the vertex set  𝑥, 𝑣𝑝 , 𝑣𝑞 , 𝑣𝑗
+  is independent, so 

𝑑 𝑥 + 𝑑(𝑣𝑝) + 𝑑(𝑣𝑞) + 𝑑(𝑣𝑗
+) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 

𝑑(𝑣𝑗
+) ≤  𝐵2 + 2  and  𝑑(𝑣𝑝),𝑑(𝑣𝑞) ≤  𝐵1 + 2. Therefore, 𝑑 𝑥 +

𝑑(𝑣𝑝) + 𝑑(𝑣𝑞) + 𝑑(𝑣𝑗
+) ≤  𝐻 + 2 𝐵1 +  𝐵2 + 7 = 𝑛 +  𝐵1 + 3. It 

implies that  𝐵1 ≥ 𝑛 − 3, a contradiction. Thus, 𝐵1 is complete. 

Similarly, 𝐵2 is complete. 

Claim 5.20. 𝑣𝑖  is not adjacent to all vertices in 𝐵1 −  𝑣𝑖
+ . 

Proof. Assume to the contrary that 𝑣𝑖  is adjacent to 𝑣𝑡1
∈ 𝐵1 −  𝑣𝑖

+ . By 

Claim 5.19, let 𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑖
+ to 𝑣𝑡1

. We 

have 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝑣𝑗
+𝐶     𝑣𝑖

−𝑣𝑖
+𝑊1𝑣𝑡1

𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. 

Claim 5.21. 𝑣𝑖  is not adjacent to all vertices in 𝐵2. 

Proof. Assume to the contrary that 𝑣𝑖  is adjacent to 𝑣𝑡2
∈ 𝐵2. Observe 

that 𝑣𝑡2
≠ 𝑣𝑗

+, otherwise 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝐶     𝑣𝑖
+𝑣𝑖

−𝐶     𝑣𝑗
+𝑣𝑖) is a hamiltonian 

cycle of 𝐺, a contradiction. Let 𝑊2 be the hamiltonian path of 𝐵2 joining 

𝑣𝑗
+ to 𝑣𝑡2

. Then, 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑘𝐶     𝑣𝑖
+𝑣𝑖

−𝑣𝑗
+𝑊2𝑣𝑡2

𝑣𝑖) is a hamiltonian 

cycle of 𝐺, a contradiction. 

 

Figure 12. Illustrating the proof of Claim 5.21. 
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Similarly the proofs of Claim 5.20 and Claim 5.21, we have: 

Claim 5.22. 𝑣𝑗  is not adjacent to all vertices in 𝐵1 ∪ (𝐵2 −  𝑣𝑗
+ ). 

Claim 5.23. 𝑣𝑖 , 𝑣𝑗  are adjacent to all vertices in 𝐻. 

Proof. Assume that 𝑣𝑖  is not adjacent to 𝑥 ∈ 𝐻. Let 𝑣𝑝 ∈ 𝐵1 −  𝑣𝑖
+ , 

𝑣𝑞 ∈ 𝐵2 −  𝑣𝑗
+ . Then by Claims 5.18, 5.20, 5.21, the vertex set 

 𝑥, 𝑣𝑖 , 𝑣𝑝 , 𝑣𝑞  is independent, so 𝑑 𝑥 + 𝑑 𝑣𝑖 + 𝑑(𝑣𝑝) + 𝑑(𝑣𝑞) ≥ 2𝑛. 

However, 𝑑(𝑥) ≤  𝐻 , 𝑑 𝑣𝑖 ≤  𝐻 + 3, 𝑑(𝑣𝑝) ≤  𝐵1 + 1, 𝑑(𝑣𝑞) ≤
 𝐵2 + 1, therefore 𝑑 𝑥 + 𝑑 𝑣𝑖 + 𝑑(𝑣𝑝) + 𝑑(𝑣𝑞) ≤ 2 𝐻 +  𝐵1 +
 𝐵2 + 5 = 𝑛 +  𝐻 + 1. It implies that  𝐻 ≥ 𝑛 − 1, a contradiction. 

Thus, 𝑣𝑖  is adjacent to all vertices in 𝐻. Similarly, 𝑣𝑗  is adjacent to all 

vertices in 𝐻. 

Claim 5.24. 𝑣𝑘  is not adjacent to all vertices in  𝑣𝑖 ∪ (𝐵2 −  𝑣𝑗
+ ). 

Proof. Assume that 𝑣𝑘  is adjacent to 𝑣𝑡2
∈ 𝐵2 −  𝑣𝑗

+ . Let 𝑊1 be the 

hamiltonian path of 𝐵1 joining 𝑣𝑘
− to 𝑣𝑖

+, and let 𝑊2 be the hamiltonian 

path of 𝐵2 joining 𝑣𝑗
+ to 𝑣𝑡2

. Then, we have 

𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑊2𝑣𝑡2

𝑣𝑘𝑣𝑘
−𝑊1𝑣𝑖

+𝑣𝑖
−𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. Therefore, 𝑣𝑘  is not adjacent to all vertices in 𝐵2 −  𝑣𝑗
+ . 

Moreover, if 𝑣𝑘  is adjacent to 𝑣𝑖 , by Claim 5.17, let W2
′  be the 

hamiltonian path of 𝐵2 joining 𝑣𝑗
+ to 𝑣𝑖

−2. Then, 

𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑊2

′𝑣𝑖
−2𝑣𝑖

−𝑣𝑖
+𝑊1𝑣𝑘

−𝑣𝑘𝑣𝑖) is a hamiltonian cycle of 𝐺, a 

contradiction. Thus, 𝑣𝑘  is not adjacent to 𝑣𝑖 . 

Claim 5.25. 𝑣𝑘  is adjacent to all vertices in 𝐵1. 

Proof. Assume to the contrary that 𝑣𝑘  is not adjacent to 𝑣𝑡1
∈ 𝐵1. Let 

𝑥 ∈ 𝐻, 𝑣𝑡2
∈ 𝐵2 −  𝑣𝑗

+ , then by Claim 5.18 and by Claim 5.24, the 

vertex set  𝑥, 𝑣𝑘 , 𝑣𝑡1
, 𝑣𝑡2

  is independent, so 𝑑 𝑥 + 𝑑(𝑣𝑘) + 𝑑(𝑣𝑡1
) +

𝑑(𝑣𝑡2
) ≥ 2𝑛. However, 𝑑 𝑥 ≤  𝐻 + 1, 𝑑 𝑣𝑘 ≤  𝐵1 + 2, 𝑑(𝑣𝑡1

) ≤

 𝐵1 , 𝑑(𝑣𝑡2
) ≤  𝐵2 . Therefore, 𝑑 𝑥 + 𝑑(𝑣𝑘) + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≤

2 𝐵1 +  𝐵2 +  𝐻 + 3 = 𝑛 +  𝐵1 − 1. It implies that  𝐵1 ≥ 𝑛 + 1, a 

contradiction. 

Arguing similarly the proofs of Claim 5.24 and Claim 5.25, we have: 

Claim 5.26. 𝑣𝑖
− is not adjacent to all vertices in {𝑣𝑗 } ∪ (𝐵1 −  𝑣𝑖

+ ). 

Claim 5.27. 𝑣𝑖
− is adjacent to all vertices in 𝐵2. 

Observe that 𝑣𝑘 , 𝑣𝑖
− ∈ 𝑁𝐶(𝐻)−, by Lemma 4.1 (b) we have: 

Claim 5.28. 𝑣𝑘𝑣𝑖
− ∉ 𝐸(𝐺). 
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Claim 5.29. 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺). 

Proof. Assume to the contrary that 𝑣𝑖𝑣𝑗 ∉ 𝐸(𝐺). Let 𝑣𝑡1
∈ 𝐵1 −  𝑣𝑖

+ , 

𝑣𝑡2
∈ 𝐵2 −  𝑣𝑗

+ . Then by Claims 5.18, 5.20. 5.21 and 5.22, the vertex 

set  𝑣𝑖 , 𝑣𝑗 , 𝑣𝑡1
, 𝑣𝑡2

  is independent, so 𝑑 𝑣𝑖 + 𝑑(𝑣𝑗 ) + 𝑑(𝑣𝑡1
) +

𝑑(𝑣𝑡2
) ≥ 2𝑛. However, 𝑑 𝑣𝑖 ≤  𝐻 + 2, 𝑑(𝑣𝑗 ) ≤  𝐻 + 2, 𝑑(𝑣𝑡1

) ≤

 𝐵1 , 𝑑(𝑣𝑡2
) ≤  𝐵2 . Therefore, 𝑑 𝑣𝑖 + 𝑑(𝑣𝑗 ) + 𝑑(𝑣𝑡1

) + 𝑑(𝑣𝑡2
) ≤

2 𝐻 +  𝐵1 +  𝐵2 + 4 = 𝑛 +  𝐻 . It implies that  𝐻 ≥ 𝑛, a 

contradiction.  

By Claim 5.25, 𝐶1 = 𝐵1 +  𝑣𝑘  is complete. By Claim 5.27, 𝐶2 = 𝐵2 +
 𝑣𝑖

−  is complete. Moreover, by Claim 5.17,  𝐶1 ,  𝐶2 ≥ 3. By Claim 5.23 

and Claim 5.29, 𝐻1 = 𝐻 +  𝑣𝑖 , 𝑣𝑗   is complete and  𝐻1 ≥ 3. Conclude that 

𝐺 is shown in Figure 13, in which 𝐻1, 𝐶1, 𝐶2 are complete and 

 𝐶1 ,  𝐶2 ,  𝐻1 ≥ 3. 

 

Figure 13. Graph 𝑮 belongs to class 𝓕𝟑. 

Clearly, 𝛼 𝐺 = 3 and 𝐺 belongs to class ℱ3. 

Case 3.3. 𝑣𝑘 ≠ 𝑣𝑖
+2,𝑣𝑘 ≠ 𝑣𝑗

− and 𝑣𝑡 ≠ 𝑣𝑗
+2, 𝑣𝑡 ≠ 𝑣𝑖

−. 

Observe that 𝑣𝑡
+, 𝑣𝑘

− ∈ 𝐵1 −  𝑣𝑖
+  and 𝑣𝑡

−, 𝑣𝑘
+ ∈ 𝐵2 − {𝑣𝑗

+}. Let 𝐺∗ be the 

graph obtain from 𝐺 by adding new edges joining all pair of nonadjacent 

vertices in the same set 𝐵1, respectively in 𝐵2 (note that their degree sum is 

greater than 𝑛 + 1). By Lemma 4.3, 𝐺 is hamiltonian if and only if 𝐺∗ is 

hamiltonian. 

We consider the graph 𝐺∗. Let 𝑊1 be the hamiltonian path of 𝐵1 joining 𝑣𝑘
− 

to 𝑣𝑖
+, and let 𝑊2 be the hamiltonian path of 𝐵2 − 𝑣𝑗

+ joining 𝑣𝑡
− to 𝑣𝑘

+. 

Then, we have 𝐶′ = (𝑣𝑖𝑊𝑣𝑗𝑣𝑗
+𝑣𝑡𝑣𝑡

−𝑊2𝑣𝑘
+𝑣𝑘𝑣𝑘

−𝑊1𝑣𝑖
+𝑣𝑖) is a hamiltonian 

cycle of 𝐺∗, i.e 𝐺∗ is hamiltonian, therefore 𝐺 is hamiltonian, a 

contradiction. 

Thus, the Case 3.3 does not happen. 
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