

Hamiltonian cycle in graphs $\sigma_4 \geq 2n$

Nguyen Huu Xuan Truong Department of Economic Information System, Academy of Finance, Vietnam

Vu Dinh Hoa

Department of Information Technology, HaNoi National University of Education, Vietnam

ABSTRACT

Given a simple undirected graph *G* with *n* vertices, we denote by σ_k the minimum value of the degree sum of any *k* pairwise nonadjacent vertices. The graph *G* is said to be hamiltonian if it contains a hamiltonian cycle (a cycle passing all vertices of *G*). The problem *HC* (Hamiltonian Cycle) is well-known a *NPC*-problem. A lot of authors have been studied Hamiltonian Cycles in graphs with large degree sums σ_k , but only for k = 1, 2, 3. In this paper, we study the structure of nonhamiltonian graphs satisfying $\sigma_4 \ge 2n$, and we prove that the problem *HC* for the graphs satisfying $\sigma_4 \ge 2nt$ is *NPC* for t < 1 and is *P* for $t \ge 1$.

Keywords

hamiltonian cycle, NPC, σ_4 .

1. INTRODUCTION

In this paper, we use definitions and notations in [4] with exception for K_n the complete graph on n vertices. We consider only simple undirected graphs. Given a graph G = (V, E) on n vertices with the vertex set V and the edge set E. A set $A \subseteq V(G)$ is *independent* if no two of its elements are adjacent. The *independent number* of G, denoted by $\alpha(G)$, is defined by setting $\alpha(G) = max \oplus |I|: I \subseteq V(G)$ is independent}. We use $\omega(G)$ to denote the number of connected components of G. The graph G is *tough* (or *1*-*tough*) if $\omega(G - S) \leq |S|$ for every nonempty subset $S \subset V(G)$.

For two disjoint graphs G_1 and G_2 , we denote by $G_1 * G_2$ the graph with the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2) \cup \{xy \mid x \in V(G_1), y \in V(G_2)\}$. For example, $K_2 * K_3 = K_5$. For a positive integer $k \leq \alpha$, we define $\sigma_k(G) = \min \{\sum_{i=1}^k d(x_i): \{x_1, x_2, \dots, x_k\}$ is independent}. In the case $k > \alpha$, set $\sigma_k(G) = k(n - \alpha)$. Instead of $\sigma_k(G)$, sometimes we simply write σ_k .

If G contains a *hamiltonian cycle* (a cycle passing all vertices of G), then G is called *hamiltonian*; otherwise, G is *nonhamiltonian*. A graph G with a

hamiltonian path (a path passing all vertices of G) is said to be *traceable*. Let C_k be the cycle of length k. The graph G is said to be k-connected if G - X is connected for any $X \subseteq V$ with |X| < k < n. Note that a tough graph is 2-connected, and toughness is a necessary condition for the existence of a hamiltonian cycle in a graph [6]. There is a polynomial algorithm $O(n^3)$ time to recognize 2-connected graph.

The problem HP, HC are well-known NPC-problem [1] [10].

HP (HAMILTONIAN PATH)

Instance: Graph *G*. *Question*: Is *G* traceable?

HC (HAMILTONIAN CYCLE) *Instance*: Graph *G*. *Question*: Is *G* hamiltonian?

A lot of authors have been studied Hamiltonian Cycles in graphs with large degree sums σ_k , but only for k = 1, 2, 3, (see [3] [5] [9], etc).

For a positive integer k, we state the problem *HCk* as follow:

HCk

Instance: Given a real t > 0 and a graph *G* satisfying $\sigma_k \ge \frac{kn}{2}t$. *Question*: Is *G* hamiltonian?

In [7], [8], we prove that:

Theorem 1.1 [7]. HC2(t < 1) is NPC and $HC2(t \ge 1)$ is P.

Theorem 1.2 [8]. HC3(t < 1) is NPC and $HC3(t \ge 1)$ is P.

In this paper, we study the class of graphs satisfying $\sigma_4 \ge 2n$ for the problem *HC*4.

2. RESULTS

The following Theorem will be proved in Section 5.

Theorem 2.1. Let G be 2-connected graph with $\sigma_4 \ge 2n$. If G is nonhamiltonian then $\alpha(G) = 3$ and G belongs to one of the following three classes of graphs:

1. Class \mathcal{F}_1 of 2-connected graphs G with $\alpha(G) = 3$ such that there exists a subset $S \subseteq V(G), |S| = 2$ so that $G - S = K_{n_1} \cup K_{n_2} \cup K_{n_3}$.

Figure 1. Class \mathcal{F}_1 .

2. Class \mathcal{F}_2 of 2-connected graphs G with $\alpha(G) = 3$ such that there exists three disjoint complete graphs $K_{n_1}, K_{n_2}, K_{n_3} \subseteq G$ and a vertex $x \in V(G)$ and $y_1 \in K_{n_1}, y_2 \in K_{n_2}, y_3 \in K_{n_3}$ so that $G - \{x\} = (K_{n_1} \cup K_{n_2} \cup K_{n_3}) + \{y_1y_2, y_2y_3, y_3y_1\}$. Moreover, there exists three vertices $z_1 \in K_{n_1} - \{y_1\}, z_2 \in K_{n_2} - \{y_2\}, z_3 \in K_{n_3} - \{y_3\}$ such that $z_1, z_2, z_3 \in N(x)$ and x can possibly be adjacent to the another vertices.

Figure 2. Class \mathcal{F}_2 .

3. Class \mathcal{F}_3 of 2-connected graphs G with $\alpha(G) = 3$ such that there exists three disjoint complete graphs $K_{n_1}, K_{n_2}, K_{n_3} \subseteq G$ $(|K_{n_1}|, |K_{n_2}|, |K_{n_3}| \ge$ 3) and distinct vertices $y_i, z_i \in K_{n_i}$ for i = 1, 2, 3 so that $G = K_{n_1} \cup K_{n_2} \cup K_{n_3} + \{y_1y_2, y_2y_3, y_3y_1\} + \{z_1z_2, z_2z_3, z_3z_1\}.$

Figure 3. Class \mathcal{F}_3 .

Note that the graph $G_n = K_1 * K_1 * (\overline{K}_3 * K_{n-5})$ with $n \ge 11$ satisfies $\sigma_4 \ge 2n$ and is not 2-connected. In Section 3, we give polynomial algorithms to recognize whether a given graph belongs to $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$.

From Theorem 2.1, we conclude the following corollary.

Corollary 2.1. Every 2-connected graph with $\alpha \ge 4$ and $\sigma_4 \ge 2n$ is hamiltonian.

For t < 1, we prove the following Theorem:

Theorem 2.2. HC4 (t < 1) is NPC.

Proof. The *HC*4 is a subproblem of *HC*, so it belongs to *NP*. In order to prove *HC*4 (t < 1) is *NPC*, we will construct a polynomial transformation from the problem *HP* to it.

For any graph G_1 with n_1 vertices, we choose a positive integer $m \ge max\left\{\frac{t(n_1-1)}{2(1-t)}, 5\right\}$. Then we construct a graph G_2 from G_1 by adding new vertex set $\{p_1, p_2, \dots, p_m\} \cup \{q_1, q_2, \dots, q_{m-1}\}$ and the edges joining each vertex of $\{p_1, p_2, \dots, p_m\}$ to all other vertices. In this way, we obtain the graph $G_2 = (G_1 \cup \overline{K}_{m-1}) * K_m$. This construction can be proceeded with the Turing machine in polynomial time.

We observe that the graph G_2 has $n_2 = n_1 + 2m - 1$ vertices and $\sigma_4(G_2) = 4m$. Because of $m \ge \frac{t(n_1-1)}{2(1-t)}$, so $2m \ge t(n_1 + 2m - 1)$, it implies that $\sigma_4(G_2) \ge 2n_2t$.

Now we prove that G_2 has a hamiltonian cycle if and only if G_1 has a hamiltonian path. Indeed, if G_1 has a hamiltonian path H then $C = (H, p_1, q_1, p_2, q_2, \dots, p_{m-1}, q_{m-1}, p_m)$ is a hamiltonian cycle in G_2 .

If G_2 has a hamiltonian cycle *C*. Observe that q_i (i = 1..m - 1) has only neighbor p_j (j = 1..m), so all vertices in $\{q_1, q_2, ..., q_{m-1}\}$ are only adjacent to all the vertices in $\{p_1, p_2, ..., p_m\}$. Then, if we remove all vertices in $\{p_1, p_2, ..., p_m\}$ then we obtain *m* connected components, which are $\{q_1\}, \{q_2\}, ..., \{q_{m-1}\}$ and G_1 , each of the connected components has a hamiltonian path (the rest of *C* after removing $\{p_1, p_2, ..., p_m\}$). Therefore, G_1 has a hamiltonian path.

Thus, we have a polynomial transformation from *HP* to HC4(t < 1). Since $HC4(t < 1) \in NP$ and $HP \in NPC$, it implies that $HC4(t < 1) \in NPC$.

Theorem 2.3. *HC*4 ($t \ge 1$) *is P*.

Proof. Assume that G satisfies $\sigma_4 \ge 2nt$ with $t \ge 1$. First, we check whether G is 2-connected or not (it can be done in polynomial time).

If G is not 2-connected then G is nonhamiltonian.

If G is 2-connected, then by Theorem 2.1, either G is hamiltonian or G belongs to $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ which can be recognize in polynomial time (see Section 3). Thus, HC4 ($t \ge 1$) is P.

3. POLYNOMIAL ALGORITHMS RECOGNIZING THE CLASSES $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$

Assume that $S \subseteq V(G)$ and $H_1, H_2, ..., H_k$ are connected components of G - S. Note that the problem "Given a vertex set S in a graph G, determine $\omega(G - S)$ and whether every connected component of G - S is complete" can be solved in polynomial time by an algorithm $O(n^2)$. Following, we design the polynomial algorithms recognizing the classes $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$.

3.1. Algorithm recognizing the class \mathcal{F}_1

Every graph G in class \mathcal{F}_1 is not 1-tough. If we remove S, then we get three connected components which are complete.

Input: graph *G* with $\sigma_4 \ge 2n$.

Output: Is_Graph_ \mathcal{F}_1 return True if $G \in \mathcal{F}_1$, else return False.

Algorithm:

Function Boolean Is_Graph_ \mathcal{F}_1

Begin

If G is not 2-connected Then Return False; For each S in $V(G)^2$ do If $(\omega(G-S)=3)$ and (the connected components H_1, H_2, H_3 are complete) Then Return True; Return False;

End;

Checking G is not 2-connected can be done by $O(n^2)$ time. Next, there are C_n^2 iterations, each iteration requires $O(n^2)$ time. Thus the overall time required by algorithm Is_Graph_ \mathcal{F}_1 is $O(n^4)$.

3.2. Algorithm recognizing the class \mathcal{F}_2

For each graph *G* in class \mathcal{F}_2 , if we remove $S = \{x, y_1, y_2, y_3\}$, then we get three connected components H_1, H_2, H_3 which are complete.

```
Input: graph G with \sigma_4 \ge 2n.

Output: Is_Graph_\mathcal{F}_2 return True if G \in \mathcal{F}_2, else return False.

Algorithm:

Function Boolean Is_Graph_\mathcal{F}_2;

Begin
```



```
For each S in V(G)^4 do

If (\omega(G-S)=3) and (the connected components

H_1, H_2, H_3 are complete) Then

If there exists x \in S and S - \{x\} = \{y_1, y_2, y_3\} such

that:

(|N_{H_1}(x)|, |N_{H_2}(x)|, |N_{H_3}(x)| \ge 1) and

(\{y_1y_2, y_2y_3, y_3y_1\} \subseteq E(G)) and

(H_1 + \{y_1\}, H_2 + \{y_2\}, H_3 + \{y_3\} are complete)

Then Return True;

Return False;
```

End;

There are C_n^4 iterations, each iteration requires $O(n^2)$ time, so the overall time required by algorithm Is_Graph_ \mathcal{F}_2 is $O(n^6)$.

3.3. Algorithm recognizing the class \mathcal{F}_3

For each graph *G* in class \mathcal{F}_3 , if we remove $S = \{y_1, y_2, y_3, z_1, z_2, z_3\}$, then we get three connected components H_1, H_2, H_3 which are complete.

Input: graph *G* with $\sigma_4 \ge 2n$. *Output:* Is_Graph_ \mathcal{F}_3 return True if $G \in \mathcal{F}_3$, else return False.

Algorithm:

Function Boolean Is_Graph_ ${\mathcal{F}}_3$ Begin

```
For each S in V(G)<sup>6</sup> do

If (\omega(G - S) = 3) and (the connected components

H_1, H_2, H_3 are complete graphs) Then

If there exists y_1, y_2, y_3 \in S and S - \{y_1, y_2, y_3\} = \{z_1, z_2, z_3\} such that:

(\{y_1y_2, y_2y_3, y_3y_1, z_1z_2, z_2z_3, z_3z_1\} \subseteq E(G)) and

(H_1 + \{y_1, z_1\}, H_2 + \{y_2, z_2\}, H_3 + \{y_3, z_3\} are complete)

Then Return True;

Return False;
```

End;

There are C_n^6 iterations, each iteration requires $O(n^2)$ time, so the overall time required by algorithm Is_Graph_ \mathcal{F}_3 is $O(n^8)$.

4. PRELIMINARIES

For what follows we assume that *C* is a longest cycle of *G*. On \overrightarrow{C} (*C* with a given orientation), we denote the predecessor and successor (along \overrightarrow{C}) by x^-, x^+ , and $x^{++} = (x^+)^+, x^{--} = (x^-)^-$. In general, for a positive integer *i*, $x^{+i} = (x^{+(i-1)})^+$ and $x^{-i} = (x^{-(i-1)})^-$. Moreover, for a vertex set $A \subseteq V(C)$, we wirte $A^+ = \{x^+: x \in A\}$ and $A^- = \{x^-: x \in A\}$. The path joining two vertices *x* and *y* of *C*, along \overrightarrow{C} , is denoted by $x\overrightarrow{C}y$, and the same path in reverse order are given by $y\overleftarrow{C}x$.

In this paper, we consider the paths and cycles as vertex sets. If x, y are the end vertices of a path P, sometimes we write xPy instead of P.

Assume that *H* is a connected component of G - C and $N_C(H)$ is the set of neighbors in *C* of all vertices in *H*. A *edge sequence* is a path joining two vertices on *C* and its inner vertices belong to G - C - H. In particular, an edge joining 2 non-consecutive vertices on *C* is also a edge sequence.

Lemma 4.1. Let G be a 2-connected graph. If G is nonhamiltonian and H is a connected component of G - C then

- (a) $N_{\mathcal{C}}(H) \cap N_{\mathcal{C}}(H)^+ = N_{\mathcal{C}}(H) \cap N_{\mathcal{C}}(H)^- = \emptyset$.
- (b) There is no edge sequence joining 2 vertices of $N_C(H)^+$. Similarly, there is no edge sequence joining 2 vertices of $N_C(H)^-$.
- (c) If $v_i, v_j \in N_C(H)$ for $i \neq j$ then there is no vertex $z \in v_i^+ \overrightarrow{C} v_j$ such that $\{v_i^+ z^+, v_j^+ z\} \subseteq E(G)$. Similarly, there is no vertex $z \in v_j^+ \overrightarrow{C} v_i$ such that $\{v_i^+ z^+, v_i^+ z\} \subseteq E(G)$.

(d) For any $x \in H$ and for any $v_i \in N_C(H)$, $d(x) + d(v_i^+) \le n - 1$.

Proof. (a), (b), (c) are presented in [2], so we will prove (d). For any $x \in H$, $d(x) = |N_H(x)| + |N_C(x)| \le |H| - 1 + |N_C(H)|$. By (a) and (b), $d(v_i^+) \le (|G| - |H|) - |N_C(H)^+| = |G| - |H| - |N_C(H)|$, so $d(x) + d(v_i^+) \le |H| - 1 + |N_C(H)| + |G| - |H| - |N_C(H)| = |G| - 1 = n - 1$.

Lemma 4.2 [2]. Assume that u, v are nonadjacent vertices and $d(u) + d(v) \ge n$. Then G is hamiltonian if and only if G + uv is hamiltonian.

We conclude the following Lemma from Lemma 4.2.

Lemma 4.3. Assume that $G^* \supseteq G$ such that $V(G^*) = V(G)$ and $d_G(u) + d_G(v) \ge n$ for any edge $uv \in E(G^*) - E(G)$. Then G is hamiltonian if and only if G^* is hamiltonian.

5. PROOFS OF THEOREM 2.1

For what follows, we assume that *G* is nonhamiltonian. Because *G* is 2-connected, so *G* is cycleable. Let $H_1, H_2, ..., H_m$ be the connected components of G - C. Clearly, $|N_C(H_i)| \ge 2$ for any i = 1..m.

Proposition 5.1. $H_1, H_2, ..., H_m$ are complete graphs.

Proof. We consider a connected component H_t (t = 1..m). Because *G* is 2connected, so $|N_C(H_t)| \ge 2$ and there are at least two vertices $v_i, v_j \in N_C(H_t)$. If H_t is not complete then there are two distinct vertices $x, y \in H_t$ such that $xy \notin E(G)$. By Lemma 4.1 (a, b), $\{x, y, v_i^+, v_j^+\}$ is an independent vertex set, therefore by $\sigma_4 \ge 2n$, $d(x) + d(y) + d(v_i^+) + d(v_j^+) \ge 2n$. However, by Lemma 4.1 (d), $d(x) + d(v_i^+) \le n - 1$ and $d(y) + d(v_j^+) \le n - 1$, it implies that $d(x) + d(y) + d(v_i^+) + d(v_j^+) \le 2n - 2$, a contradiction. Thus, H_t is complete, and we have H_1, H_2, \dots, H_m are complete graphs.

Proposition 5.2. $|N_{\mathcal{C}}(H_t)| \leq \frac{|\mathcal{C}|}{2}$ for every t = 1..m.

Proof. By Lemma 4.1 (a), $N_C(H_t) \cap N_C(H_t)^+ = \emptyset$, therefore $|C| \ge |N_C(H_t) \cup N_C(H_t)^+| = 2|N_C(H_t)|$, it implies that $|N_C(H_t)| \le \frac{|C|}{2}$.

Proposition 5.3. m = 1.

Proof. We consider the case of *m* as follow:

a) $m \ge 4$.

Let $x_i \in H_i$ for each i = 1..4. Clearly, the vertex set $\{x_1, x_2, x_3, x_4\}$ is independent, by $\sigma_4 \ge 2n$ we have $d(x_1) + d(x_2) + d(x_3) + d(x_4) \ge 2n$. Moreover, by Proposition 5.2 and $m \ge 4$, $d(x_i) \le |H_i| - 1 + |N_C(H_i)| \le |H_i| - 1 + \frac{|C|}{2}$, so $d(x_1) + d(x_2) + d(x_3) + d(x_4) \le |H_1| + |H_2| + |H_3| + |H_4| + 2|C| - 4 \le n + |C| - 4$, therefore $n + |C| - 4 \ge 2n$, it implies that $|C| \ge n + 4$, a contradiction.

Thus, the case $m \ge 4$ does not happen.

b) *m* = 3.

Let $x \in H_1$, $y \in H_2$, $z \in H_3$ and we consider each vertex $v_i \in N_C(H_1)$.

Claim 5.1. $v_i^+ \in N(y) \cup N(z)$.

Proof. Assume to the contrary that $v_i^+ \notin N(y) \cup N(z)$, then the vertex set $\{x, y, z, v_i^+\}$ is independent, by $\sigma_4 \ge 2n$ we have $d(x) + d(y) + d(z) + d(v_i^+) \ge 2n$. By Lemma 4.1 (d), $d(x) + d(v_i^+) \le n - 1$.

Moreover, by Proposition 5.2 we have $d(y) \le |H_2| - 1 + \frac{|C|}{2}$ and $d(z) \le |H_3| - 1 + \frac{|C|}{2}$. Therefore, $d(x) + d(y) + d(z) + d(v_i^+) \le n - 3 + |H_2| + |H_3| + |C| < 2n - 3$, a contradiction.

Claim 5.2. $|N_{\mathcal{C}}(H_1)| = |N_{\mathcal{C}}(H_2)| = |N_{\mathcal{C}}(H_3)| = 2.$

Proof. If $|N_{\mathcal{C}}(H_1)| \ge 3$ then by Claim 5.1, there are at least two vertices $v_i, v_j \in N_{\mathcal{C}}(H_1)$ such that $v_i^+, v_j^+ \in N(y)$ or $v_i^+, v_j^+ \in N(z)$, therefore there exists an edge sequence joining v_i^+, v_j^+ , which contradicts to Lemma 4.1 (b). Thus, $|N_{\mathcal{C}}(H_1)| = 2$. Similarly, we have $|N_{\mathcal{C}}(H_2)| = |N_{\mathcal{C}}(H_3)| = 2$.

Claim 5.3. $5 \le |C| \le 6$.

Proof. If there exists $v \in C$ such that $v \notin N_C(H_1) \cup N_C(H_2) \cup N_C(H_3)$, then the vertex set $\{x, y, z, v\}$ is independent, by $\sigma_4 \ge 2n$ we have $d(x) + d(y) + d(z) + d(v) \ge 2n$. However, $d(x) \le |H_1| - 1 + |N_C(H_1)| = |H_1| + 1$, $d(y) \le |H_2| + 1$, $d(z) \le |H_3| + 1$, $d(v) \le |C| - 1$, so $d(x) + d(y) + d(z) + d(v) \le |H_1| + |H_2| + |H_3| + |C| + 2 = n + 2$. It implies that $n + 2 \ge 2n$ and $n \le 2$, a contradiction. Therefore, $N_C(H_1) \cup N_C(H_2) \cup N_C(H_3) = |C|$, and by Claim 5.2, $|C| \le 6$. Moreover, by Lemma 4.1 (a), $|C| \ge 4$. If |C| = 4 then by Lemma 4.1 (a) and Claim 5.1, there exists an edge sequence joining two vertices in $N_C(H_1)^+$, which contradicts Lemma 4.1 (b). Thus, we have $5 \le |C| \le 6$.

If |C| = 5, so $C = (v_1, v_2, v_3, v_4, v_5)$. Without loss of generality, by Lemma 4.1 (a, b) and Claim 5.1, we assume that $v_1, v_3 \in N_C(H_1)$, $v_2 \in N_C(H_2)$, $v_4 \in N_C(H_3)$. Then, $v_5 \in N_C(H_2)$ and $N_C(H_2)^+ = \{v_1, v_3\}$. It implies that there exists an edge sequence joining two vertices in $N_C(H_2)^+$, which contradicts Lemma 4.1 (b). Therefore, by Claim 5.3, |C| = 6, so $C = (v_1, v_2, v_3, v_4, v_5, v_6)$ and by Claim 5.2, $N_C(H_1) \cap N_C(H_2) = N_C(H_2) \cap N_C(H_3) = N_C(H_1) \cap N_C(H_3) = \emptyset$. Without loss of generality, by Lemma 4.1 (a, b) and Claim 5.1, there are two possible case as follow:

- (1) Case $v_1, v_3 \in N_C(H_1)$, $v_2 \in N_C(H_2)$, $v_4 \in N_C(H_3)$. Observe that $v_6 \in N_C(H_3)$ and $v_5 \in N_C(H_2)$. Let W_1, W_2, W_3 be the paths in H_1, H_2, H_3 joining the pair of vertices $(v_1, v_3), (v_2, v_5), (v_4, v_6)$ respectively. Then, we have $C' = (v_1 W_1 v_3 v_2 W_2 v_5 v_4 W_3 v_6 v_1)$ is longer than *C*, which contradicts the fact that *C* is a longest cycle of *G*.
- (2) Case $v_1, v_4 \in N_C(H_1)$, $v_2 \in N_C(H_2)$, $v_5 \in N_C(H_3)$. Observe that $v_6 \in N_C(H_2)$ and $v_3 \in N_C(H_3)$. Let W_1, W_2, W_3 be the paths in H_1, H_2, H_3 joining the pair of vertices $(v_1, v_4), (v_2, v_6), (v_3, v_5)$ respectively. The, we have $C' = (v_1 W_1 v_4, v_3 W_3 v_5, v_6 W_2 v_2, v_1)$ is longer than *C*, a contradiction.

Thus, the case m = 3 does not happen.

c) m = 2.

Without loss of generality, assume that $|H_1| + |N_C(H_1)| \ge |H_2| + |N_C(H_2)|$.

Claim 5.4. $|N_C(H_1)| = 2$.

Proof. By $|N_{C}(H_{1})| \ge 2$, assume to contrary that $|N_{C}(H_{1})| \ge 3$. Let *x* ∈ *H*₁, *y* ∈ *H*₂. By Lemma 4.1 (b) there exists two vertices $v_{i}^{+}, v_{j}^{+} \in N_{C}(H_{1})^{+} - N_{C}(H_{2})$. By Lemma 4.1 (a, b), the vertex set $\{x, y, v_{i}^{+}, v_{j}^{+}\}$ is independent, so $d(x) + d(y) + d(v_{i}^{+}) + d(v_{j}^{+}) \ge 2n$. By Lemma 4.1 (d), $d(x) + d(v_{i}^{+}) \le n - 1$. Moreover, $d(y) \le |H_{2}| - 1 + |N_{C}(H_{2})| \le |H_{1}| - 1 + |N_{C}(H_{1})|, d(v_{j}^{+}) \le n - |H_{1}| - |N_{C}(H_{1})|$. Therefore $d(x) + d(y) + d(v_{i}^{+}) + d(v_{i}^{+}) \le 2n - 2$, a contradiction. Thus, $|N_{C}(H_{1})| = 2$.

Claim 5.5. $|N_C(H_2)| = 2$.

Proof. Assume to contrary that $|N_{C}(H_{2})| \ge 3$. Arguing similarly the proof of Claim 5.4, there exists two vertices $v_{i}^{+}, v_{j}^{+} \in N_{C}(H_{2})^{+} - N_{C}(H_{1})$. Let $x \in H_{1}, y \in H_{2}$. By Lemma 4.1 (a, b), the vertex set $\{x, y, v_{i}^{+}, v_{j}^{+}\}$ is independent, so $d(x) + d(y) + d(v_{i}^{+}) + d(v_{j}^{+}) \ge 2n$. By Lemma 4.1 (b) and by $v_{i}^{+} \notin N(H_{1}) \cup N(H_{2}), d(v_{i}^{+}) \le |C| - |N_{C}(H_{2})|$. Moreover, $d(x) \le |H_{1}| - 1 + |N_{C}(H_{1})| = |H_{1}| + 1, d(y) \le |H_{2}| - 1 + |N_{C}(H_{2})|, \quad d(v_{j}^{+}) \le |C| - |N_{C}(H_{2})| \le |C| - 2 \le n - 4$. Therefore, $d(x) + d(y) + d(v_{i}^{+}) + d(v_{j}^{+}) \le |H_{1}| + |H_{2}| + |C| + n - 4 = 2n - 4$, a contradiction. Thus, $|N_{C}(H_{2})| = 2$.

By arguing similarly above, observe that $|N_C(H_1)^+ \cap N_C(H_2)| = 1 = |N_C(H_2)^+ \cap N_C(H_1)|$. Without loss of generality, we assume that $N_C(H_2) = \{v_i, v_i^{+2}\}$, $N_C(H_1) = \{v_j, v_i^+\}$ with $v_j \neq v_i^{+3}$ and $v_j^+ \neq v_i$. Because *G* is 2-connected and *C* is a longest cycle of *G*, so $|H_2| = 1$, i.e $H_2 = \{y\}$. Let $x \in H_1$ and W_1 be the path in H_1 joining v_i^+ to v_j .

Figure 4. Illustrating the proofs of part c), Proposition 5.3.

If $v_i^{+3}v_j^+ \in E(G)$ then $C' = (v_iyv_i^{+2}v_i^+W_1v_j\overleftarrow{C}v_i^{+3}v_j^+\overrightarrow{C}v_i)$ is longer than C, a contradiction. Therefore, $v_i^{+3}v_j^+ \notin E(G)$ and the vertex set $\{x, y, v_i^{+3}, v_j^+\}$ is independent, so $d(x) + d(y) + d(v_i^{+3}) + d(v_j^+) \ge 2n$. However, by Lemma 4.1 (d), $d(y) + d(v_i^{+3}) \le n - 1$ and $(x) + d(v_j^+) \le n - 1$, it implies that $d(x) + d(y) + d(v_i^{+3}) + d(v_j^+) \le 2n - 2$, a contradiction.

Thus, the case m = 2 does not happen.

By these case a), b), c) do not happen, we finish the proof that m = 1. Then G - C has only one connected component. For what follows, let H be the connected component of G - C. The fact that H = G - C. By Proposition 5.1, H is complete.

Proposition 5.4. $|N_C(H)| = 2$.

Proof. Clearly, $|N_C(H)| \ge 2$ by *G* is 2-connected. Assume that $|N_C(H)| \ge 3$. For any two vertices $v_i, v_j \in N_C(H)$, let $v_k \in N_C(H) - \{v_i, v_j\}$ and $x \in H$, then by Lemma 4.1 (b) the vertex set $\{x, v_i^+, v_j^+, v_k^+\}$ is independent. So $d(x) + d(v_i^+) + d(v_j^+) + d(v_k^+) \ge 2n$. However, by Lemma 4.1 (d), $(x) + d(v_k^+) \le n - 1$, it implies that $d(v_i^+) + d(v_j^+) \ge n + 1$.

By *G* is 2-connected and *H* is complete, there exists two vertices $v_{i_0}, v_{j_0} \in N_C(H)$ and a hamiltonian path *W* in *H* joining v_{i_0} to v_{j_0} . Then $C' = (v_{i_0}Wv_{j_0}\overleftarrow{C}v_{i_0}^+v_{j_0}^+\overrightarrow{C}v_{i_0})$ is a hamiltonian cycle of graph $G' = G + v_{i_0}^+v_{j_0}^+$, i.e. *G'* is hamiltonian. By Lemma 4.2, *G* is hamiltonian if and only if *G'* is hamiltonian, therefore *G* is hamiltonian, which contradicts to the assumption that *G* is nonhamiltonian. Thus, $|N_C(H)| = 2$.

For what follows, let v_i, v_j be two vertices of $N_C(H)$ and let W be the hamiltonian path of H joining v_i, v_j .

Proposition 5.5. $N(v_i^+) \cup N(v_j^+) = C - \{v_i^+, v_j^+\}.$

Proof. Assume to the contrary that there exists $v_k \in C - \{v_i^+, v_j^+\}$ such that $v_k \notin N(v_i^+) \cup N(v_j^+)$. Clearly, $v_k \notin \{v_i, v_j\}$. Let $x \in H$, then by Lemma 4.1 (b), the vertex set $\{x, v_i^+, v_j^+, v_k\}$ is independent, so $d(x) + d(v_i^+) + d(v_j^+) + d(v_k) \ge 2n$. However, $d(x) \le |H| + 1, d(v_k) \le |C| - 3$, it implies that $d(v_i^+) + d(v_j^+) \ge 2n - |H| - |C| + 2 = n + 2$. Therefore, by Lemma 4.2, *G* is hamiltonian if and only if $G' = G + v_i^+ v_j^+$ is hamiltonian. Observe that $C' = (v_i W v_j C v_i^+ v_j^+ C v_i)$ is a hamiltonian cycle of *G'*, i.e *G'* is hamiltonian, it implies that *G* is hamiltonian, a contradiction.

Now we consider two case of toughness of G.

I. *G* is not 1-tough

By G is not 1-tough, there exists a vertex set $S \neq \emptyset$ such that G - S has at least |S| + 1 connected components. By G is 2-connected, $|S| \ge 2$. Since $n - |S| \ge \omega(G - S) \ge |S| + 1$ so $2|S| \le n - 1$.

Claim 5.6. $S \cap H = \emptyset$.

Proof. Observe that G - H = C is 1-tough, if $H - S = \emptyset$ then $\omega(G - S) = \omega(C - S) \le |S|$, which contradicts to the fact that $\omega(G - S) \ge |S| + 1$. Therefore, $H - S \ne \emptyset$. Let $S \cap H = S_H, S \cap C = S_C$. If $|S_H| \ge 1$ then $\omega(G - S) \le 1 + \omega(C - S_C) \le 1 + |S_C| \le |S|$, a contradiction. Thus, $|S_H| = 0$, i.e. $S \cap H = \emptyset$.

Observe that $v_i, v_j \in S$, otherwise $\omega(G - S) \leq \omega(C - S) \leq |S|$, a contradiction. Therefore, *H* is a connected component of G - S. Let $H, T_1, T_2, ..., T_k$ $(k \geq |S|)$ be the connected components of G - S.

Claim 5.7. k = |S| = 2

Proof. Assume that $k \ge 3$. Let $x \in H$, $y_1 \in T_1$, $y_2 \in T_2$, $y_3 \in T_3$, then the vertex set $\{x, y_1, y_2, y_3\}$ is independent, so $d(x) + d(y_1) + d(y_2) + d(y_3) \ge 2n$. Observe that $d(x) \le |H| + 1$ and $d(y_i) \le |T_i| - 1 + |S|$ for any i = 1, 2, 3. Therefore, $d(x) + d(y_1) + d(y_2) + d(y_3) \le |H| + |T_1| + |T_2| + |T_3| + 3|S| - 2 \le 2|S| - 2 + (n - k + 3) = 2|S| + n - k + 1$. It implies that $2|S| + n - k + 1 \ge 2n$, i.e $2|S| \ge n + k - 1 \ge n + 2$ (by $k \ge 3$), which contradicts to the fact that $2|S| \le n - 1$. Therefore k ≤ 2. By $k \ge |S| \ge 2$, we have k = |S| = 2.

By Claim 5.7 and by $v_i, v_j \in S$ we have $S = \{v_i, v_j\}$ and G - S has three connected components, such as H, T_1, T_2 . By Proposition 5.5, $T_1 = (\{v_i^+\} \cup N(v_i^+) - \{v_i, v_j\})$ and $T_2 = (\{v_j^+\} \cup N(v_j^+) - \{v_i, v_j\})$.

Claim 5.8. T_1 , T_2 is complete.

Proof. Assume that T_1 is not complete. Then there exists pair of nonadjacent vertices $y, z \in T_1$. Let $x \in H$, then the vertex set $\{x, y, z, v_j^+\}$ is independent, so $d(x) + d(y) + d(z) + d(v_j^+) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_j^+) \le |T_2| + 1$, $d(y) \le |T_1|$, $d(z) \le |T_1|$. Therefore $d(x) + d(y) + d(z) + d(v_j^+) \le |H| + 2|T_1| + |T_2| + 2 = n + |T_1|$. It implies that $n + |T_1| \ge 2n$, i.e $|T_1| \ge n$, a contradiction. Thus, T_1 is complete. Similarly, we have T_2 is complete.

Figure 5. Graph G belongs to class \mathcal{F}_1 .

Clearly, $3 \le \alpha(G) \le 5$. If $\alpha(G) \ge 4$, there exists a independent set of four vertices, whose elements are $x \in H$, $y \in T_1$, $z \in T_2$ and a vertex in S (without loss of generality, assume that the vertex in S is v_i). By $\sigma_4 \ge 2n$, we have $d(x) + d(y) + d(z) + d(v_i) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_i) \le n - 4$, $d(y) \le |T_1|$, $d(z) \le |T_2|$. It implies that $d(x) + d(y) + d(z) + d(v_i) \le |H| + |T_1| + |T_2| + n - 3 = 2n - 5$, a contradiction. Thus, $\alpha(G) = 3$.

Conclude that in this Case *G* is not 1-tough, *G* belongs to class \mathcal{F}_1 .

II. *G* is 1-tough

Let $P_1 = N(v_i^+) \cup \{v_i^+\}$, $P_2 = N(v_j^+) \cup \{v_j^+\}$. By Lemma 4.1 (c) and Proposition 5.5, we have P_1, P_2 are two paths on *C* satisfying $\{v_i, v_i^+, v_i^{+2}\} \subseteq P_1$, $\{v_j, v_j^+, v_j^{+2}\} \subseteq P_2$, $P_1 \cup P_2 = C$ and if $v \in P_1 \cap P_2$ then *v* is an end vertex of both P_1, P_2 .

Let $A_1 = P_1 - \{v_i\}$, $A_2 = P_2 - \{v_j\}$. Clearly, $|A_1 \cap A_2| \le 2$. We consider three case of $|A_1 \cap A_2|$.

Case 1. $A_1 \cap A_2 = \emptyset$.

Figure 6. Illustrating the Case 1.

Observe that there exists an edge joining a vertex $v_k \in A_1$ to a vertex $v_t \in A_2$, otherwise $\omega(G - \{v_i, v_j\}) = 3$, which contradicts to the fact that *G* is 1-tough.

If there exists pair of nonadjacent vertices $v_{i_1}, v_{i_2} \in A_1$, let $x \in H$, then the vertex set $\{x, v_{i_1}, v_{i_2}, v_j^+\}$ is independent, so $d(x) + d(v_{i_1}) + d(v_{i_2}) + d(v_j^+) \ge 2n$. By Lemma 4.1 (d), $d(x) + d(v_j^+) \le n - 1$, we have $d(v_{i_1}) + d(v_{i_2}) \ge n + 1$. By Lemma 4.2, *G* is hamiltonian if and only if $G' = G + v_{i_1}v_{i_2}$ is hamiltonian.

Arguing similarly, for any pair of nonadjacent vertices $v_{j_1}, v_{j_2} \in A_2$, we have $d(v_{j_1}) + d(v_{j_2}) \ge n + 1$ and *G* is hamiltonian if and only if $G'' = G + v_{j_1}v_{j_2}$ is hamiltonian.

Let G^* be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set A_1 , respectively in A_2 . By Lemma 4.3, G is hamiltonian if and only if G^* is hamiltonian. We consider graph G^* , let W_1 be the hamiltonian path of A_1 joining v_i^+ to v_k , and let W_2 be the hamiltonian path of A_2 joining v_t to v_j^+ . Then, we have $C' = (v_i v_i^+ W_1 v_k v_t W_2 v_j^+ v_j W v_i)$ is a hamiltonian cycle in G^* , i.e G^* is hamiltonian. Therefore, G is hamiltonian, a contradiction.

Thus, the Case 1 does not happen.

Case 2. $|A_1 \cap A_2| = 1$.

Let $A_1 \cap A_2 = \{v_k\}$. Without loss of generality, assume that $v_k \in v_i^{+2} \overrightarrow{C} v_j^{-}$ $(v_i^{+2} \neq v_i)$.

Figure 7. Illustrating the Case 2.

Case 2.1. $v_k \equiv v_i^{+2}$.

If |H| > 1 then $C' = (v_i W v_j \overleftarrow{C} v_k v_j^+ \overrightarrow{C} v_i)$ is longer than *C*. Therefore, |H| = 1, let $H = \{x\}$. If $v_i^- \in N(v_i^+)$ then $C' = (v_i x v_j \overleftarrow{C} v_k v_j^+ \overrightarrow{C} v_i^- v_i^+ v_i)$ is a hamiltonian cycle in *G* a contradiction. Therefore, $v_i^- \notin N(v_i^+)$, and by Proposition 5.5, $v_i^- \in N(v_j^+)$ and $d(v_i^+) = 2$.

We consider subgraph $B_2 = A_2 - \{v_k\} = v_k \overrightarrow{C} v_i^- - \{v_k, v_j\}$. If there exists pair of nonadjacent vertices $v_{t_1}, v_{t_2} \in B_2$ then the vertex set $\{x, v_i^+, v_{t_1}, v_{t_2}\}$ is independent, so $d(x) + d(v_i^+) + d(v_{t_1}) + d(v_{t_2}) \ge 2n$. However, $d(x) = d(v_i^+) = 2$ and $d(v_{t_1}), d(v_{t_2}) \le |C| - 3 = n - 4$, therefore $d(x) + d(v_i^+) + d(v_{t_1}) + d(v_{t_2}) \le 2n - 4$, a contradiction. Thus, B_2 is complete.

If $v_j^- \neq v_k$ then $v_i^-, v_j^- \in B_2$, so $v_i^- v_j^- \in E(G)$, which contradicts to Lemma 4.1 (b). Therefore $v_i^- \equiv v_k$.

Because *G* is 1-tough, nonhamiltonian, so $n \ge 7$ and $v_i^- \ne v_j^+$. If there exists a vertex $v_t \in v_j^{+2}\overrightarrow{C}v_i^-$ is adjacent to v_j then we have $C' = (v_i x v_j v_t \overrightarrow{C}v_i^- v_t^- \overleftarrow{C}v_j^+ v_k v_i^+ v_i)$ is a hamiltonian cycle in *G*, a contradiction. Therefore, v_j is not adjacent to all vertices in $v_j^{+2}\overrightarrow{C}v_i^-$.

Similarly, if there exists a vertex $v_t \in v_j^{+2}\overrightarrow{C}v_i^-$ is adjacent to v_k then we have $C' = (v_i x v_j \overrightarrow{C}v_t^- v_i^- \overleftarrow{C}v_t v_k v_i^+ v_i)$ is a hamiltonian cycle in *G*, a contradiction. Therefore, v_k is not adjacent to all vertices in $v_j^{+2}\overrightarrow{C}v_i^-$.

Conclude that the graph G is shown in Figure 8, v_i can possibly be adjacent to another vertices:

Figure 8. Graph G belongs to class \mathcal{F}_2 .

Clearly, $\alpha(G) = 3$ and *G* belongs to class \mathcal{F}_2 .

Case 2.2. $v_k \neq v_i^{+2}$ and $v_k \equiv v_i^{-}$.

Clearly, $v_k^- \neq v_i^+$. If $v_i^- v_k^- \in E(G)$, then $C' = (v_i W v_j v_k v_j^+ \overrightarrow{C} v_i^- v_k^- \overleftarrow{C} v_i)$ is a hamiltonian cycle of *G*, a contradiction. Therefore, $v_i^- v_k^- \notin E(G)$. By $v_k \equiv v_j^-$ and by Lemma 4.1 (b), $v_i^- v_k \notin E(G)$, so $v_i^- \neq v_j^+$ by $v_k \in N(v_j^+)$. We have the following Claims.

Claim 5.9. $v_i^- \in A_2 - A_1$.

Proof. Assume that $v_i^- \in A_1$. Let $x \in H$, then the vertex set $\{x, v_j^+, v_i^-, v_k^-\}$ is independent, so $d(x) + d(v_j^+) + d(v_i^-) + d(v_k^-) \ge$

2*n*. By Lemma 4.1 (d), $d(x) + d(v_j^+) \le n - 1$ and $d(v_i^-) + d(v_k^-) \ge n + 1$. Therefore, by Lemma 4.2, *G* is hamiltonian if and only if $G' = G + v_i^- v_k^-$ is hamiltonian. Observe that $C' = (v_i W v_j v_k v_j^+ \overrightarrow{C} v_i^- v_k^- \overrightarrow{C} v_i)$ is a hamiltonian cycle of *G'*, so *G'* and *G* are hamiltonian, a contradiction. Thus, $v_i^- \notin A_1$, and by $P_1 \cup P_2 = C$ we have $v_i^- \in A_2 - A_1$.

Figure 9. Illustrating the Claim 5.9.

Let $B_1 = A_1 - \{v_k\} = v_i^+ \overrightarrow{C} v_k^-$, $B_2 = A_2 - \{v_k\} = v_j^+ \overrightarrow{C} v_i^-$. By $v_i^- \neq v_j^+$ and by $v_k^- \neq v_i^+$ we have $|B_1|, |B_2| \ge 2$. Arguing similarly, for any pair of nonadjacent vertices (y, z) in the same set B_1 , respectively in B_2 , we have $d(y) + d(z) \ge n + 1$.

Claim 5.10. *There are no edges joining a vertex in* B_1 *to a vertex in* B_2 *.*

Proof. Assume to the contrary that there exists an edge joining $v_{t_1} \in B_1$ to $v_{t_2} \in B_2$. Clearly, $v_{t_1} \neq v_i^+$, $v_{t_2} \neq v_j^+$. Let G^* be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set B_1 , respectively in B_2 . By Lemma 4.3, G is hamiltonian if and only if G^* is hamiltonian.

We consider graph G^* , observe that B_1, B_2 are complete. Let W_1 be the hamiltonian path in B_1 joining v_{t_1} to v_i^+ and let W_2 be the path in B_2 joining v_j^+ to v_{t_2} . Then, $C' = (v_i W v_j v_k v_j^+ W_2 v_{t_2} v_{t_1} W_1 v_i^+ v_i)$ is a hamiltonian cycle of G^* , i.e G^* is hamiltonian, it implies that G is hamiltonian, a contradiction.

Claim 5.11. B_1 , B_2 are complete.

Proof. Assume that there exists a pair of nonadjacent vertices $v_{i_1}, v_{i_2} \in B_1$. Let $x \in H$, then the vertex set $\{x, v_{i_1}, v_{i_2}, v_j^+\}$ is independent, so $d(x) + d(v_{i_1}) + d(v_{i_2}) + d(v_j^+) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_j^+) \le |B_2| + 2$ and $d(v_{i_1}), d(v_{i_2}) \le |B_1| + 1$, therefore $d(x) + d(v_{i_1}) + d(v_{i_2}) + d(v_j^+) \le |H| + 2|B_1| + |B_2| + 5 = n + |B_1| + 2$. It implies that $|B_1| \ge n - 2$, a contradiction. Thus, B_1 is complete. Similarly, we have B_2 is complete.

Claim 5.12. v_k , v_j are not adjacent to any vertex in $B_2 - \{v_j^+\}$.

Proof. Assume that v_k is adjacent to a vertex $v_p \in B_2 - \{v_j^+\}$. By Claim 5.11, let W_1 be the hamiltonian path of B_1 joining v_k^- to v_i^+ , and let W_2 be the hamiltonian path of B_2 joining v_j^+ to v_p . Then, $C' = (v_i W v_j v_j^+ W_2 v_p v_k v_k^- W_1 v_i^+ v_i)$ is a hamiltonian cycle of G, a contradiction. Similarly, if v_j is adjacent to a vertex $v_q \in B_2 - \{v_j^+\}$, let W_2^* be the hamiltonian path of B_2 joining v_q to v_j^+ , then $C' = (v_i W v_j v_q W_2^* v_j^+ v_k v_k^- W_1 v_i^+ v_i)$ is a hamiltonian cycle of G, a contradiction. Thus, v_k, v_j are not adjacent to any vertex in $B_2 - \{v_j^+\}$.

Claim 5.13. v_j is not adjacent to any vertex in B_1 .

Proof. Assume to the contrary that v_j is adjacent to a vertex $v_p \in B_1$. Let W_2 be the hamiltonian path of B_2 joining v_j^+ to v_i^- . It happens as one of two following case:

- (1) Case $v_p \neq v_i^+$: Let W_1 be the hamiltonian path of B_1 joining v_p to v_i^+ , we have $C' = (v_i W v_j v_p W_1 v_i^+ v_k v_j^+ W_2 v_i^- v_i)$ is a hamiltonian cycle of G, a contradiction.
- (2) Case $v_p \equiv v_i^+$: Let W_1 be the hamiltonian path of B_1 joining v_p to v_k^- , we have $C' = (v_i W v_j v_p W_1 v_k^- v_k v_j^+ W_2 v_i^- v_i)$ is a hamiltonian cycle of *G*, a contradiction.

Claim 5.14. v_i is adjacent to all vertices in *H*.

Proof. Assume to the contrary that v_j is not adjacent to a vertex $x \in H$. Let $v_{t_1} \in B_1$, $v_{t_2} \in B_2 - \{v_j^+\}$, then by Claims 5.10, 5.12, 5.13, the vertex set $\{x, v_j, v_{t_1}, v_{t_2}\}$ is independent, so $d(x) + d(v_j) + d(v_{t_1}) + d(v_{t_2}) \ge 2n$. However, $d(x) \le |H|$, $d(v_j) \le |H| + 2$, $d(v_{t_1}) \le |B_1| + 1$, $d(v_{t_2}) \le |B_2|$. Therefore, $2n \le d(x) + d(v_j) + d(v_{t_1}) + d(v_{t_2}) \le 2|H| + |B_1| + |B_2| + 3 = n + |H|$, it implies that $|H| \ge n$, a contradiction.

Claim 5.15. v_k is adjacent to all vertices in B_1 .

Proof. Assume to the contrary that v_k is not a vertex $v_{t_1} \in B_1$. Let $x \in H$ and $v_{t_2} \in B_2 - \{v_j^+\}$. Then by Claim 5.10 and by Claim 5.12, the vertex set $\{x, v_k, v_{t_1}, v_{t_2}\}$ is independent, so $d(x) + d(v_k) + d(v_{t_1}) + d(v_{t_2}) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_k) \le |B_1| + 2$, $d(v_{t_1}) \le |B_1|$, $d(v_{t_2}) \le |B_2|$. Therefore, $d(x) + d(v_k) + d(v_{t_1}) + d(v_{t_2}) \le |H| + 2|B_1| + |B_2| + 3 = n + |B_1|$, it implies that $|B_1| \ge n$, a contradiction.

Let $H_1 = H + \{v_j\}$, by Claim 5.14, H_1 is complete. By Claim 5.15, $A_1 = B_1 + \{v_k\}$ is complete. The graph G is shown in Figure 10, in which,

 H_1, A_1, B_2 are complete and $|H_1|, |A_1|, |B_2| \ge 2$. Moreover, the vertex v_i can possibly be adjacent to another vertices.

Figure 10. Graph G belongs to class \mathcal{F}_2 .

Clearly, $3 \le \alpha(G) \le 4$. If $\alpha(G) = 4$, then there exists $x \in H_1, y \in A_1, z \in B_2$ such that the vertex set $\{x, y, z, v_i\}$ is independent, so $d(x) + d(y) + d(z) + d(v_i) \ge 2n$. However, $d(x) + d(y) + d(z) \le |H_1| + |A_1| + |A_2| - 1 = n - 2$, therefore $d(v_i) \ge n + 2$, a contradiction. Thus $\alpha(G) = 3$.

Conclude that in this Case 2.2, G belongs to class \mathcal{F}_2 .

Case 2.3. $v_k \neq v_i^{+2}$ and $v_k \neq v_j^{-}$.

Arguing similarly the proofs of Case 2.2, let $B_1 = A_1 - \{v_k\}$ and $B_2 = A_2 - \{v_k\}$, then for any pair of nonadjacent vertices (y, z) together in B_1 or B_2 , we have $d(y) + d(z) \ge n + 1$. Observe that $v_i^+ \ne v_k^- \in B_1$ and $v_j, v_j^+ \ne v_k^+ \in B_2$.

Let G^* be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set B_1 , respectively in B_2 . By Lemma 4.3, G is hamiltonian if and only if G^* is hamiltonian. We consider graph G^* , let W_1 be the hamiltonian path of B_1 joining v_k^- to v_i^+ , and let W_2 be the hamiltonian path of B_2 joining v_j^+ to v_k^+ . Then, we have $C' = (v_i W v_j v_j^+ W_2 v_k^+ v_k v_k^- W_1 v_i^+ v_i)$ is a hamiltonian cycle of G^* , i.e G^* is hamiltonian. Therefore, G is hamiltonian, a contradiction.

Thus, the Case 2.3 does not happen.

Case 3. $|A_1 \cap A_2| = 2$.

Let $A_1 \cap A_2 = \{v_k, v_t\}$. Without loss of generality, we assume that $v_k \in v_i^{+2} \overrightarrow{C} v_j^{-} (v_i^{+2} \neq v_j)$ and $v_t \in v_j^{+2} \overrightarrow{C} v_i^{-} (v_j^{+2} \neq v_i)$. Let $B_1 = A_1 - \{v_k, v_t\}$, $B_2 = A_2 - \{v_k, v_t\}$. Arguing similarly the proofs of Case 2.2, for any pair of nonadjacent vertices (y, z) in the same set B_1 , respectively in B_2 , we get $d(y) + d(z) \ge n + 1$.

Figure 11. Illustrating the Case 3.

Case 3.1. $v_k \equiv v_i^{+2}$ or $v_t \equiv v_j^{+2}$.

Without loss of generality, assume that $v_k \equiv v_i^{+2}$. If $v_i^- \in N(v_i^+)$ then we have $C' = (v_i W v_j \overleftarrow{C} v_k v_j^+ \overrightarrow{C} v_i^- v_i^+ v_i)$ is a hamiltonian cycle of G, a contradiction. Therefore $v_i^- \notin N(v_i^+)$, i.e $v_i^- \notin A_1$ and $v_i^- \in A_2$. It implies that there is no vertex $v_t \in v_j^{+2} \overrightarrow{C} v_i^-$ such that $v_t \in A_1 \cap A_2$, a contradiction.

Thus, the Case 3.1 does not happen.

Case 3.2.
$$(v_k \neq v_i^{+2} \text{ and } v_k \equiv v_j^{-}) \text{ or } (v_t \neq v_j^{+2} \text{ and } v_t \equiv v_i^{-}).$$

Without loss of generality, assume that $v_k \neq v_i^{+2}$ and $v_k \equiv v_j^{-}$. We have the following Claims:

Claim 5.16. $v_t \equiv v_i^-$.

Proof. Assume to the contrary that $v_t \neq v_i^-$. Arguing similarly the proofs of Case 2.2, we have $v_i^- v_k^- \notin E(G)$ and $d(v_i^-) + d(v_k^-) \ge n + 1$. By Lemma 4.2, *G* is hamiltonian if and only if $G' = G + v_i^- v_k^-$ is hamiltonian. Observe that $C' = (v_i W v_j v_k v_j^+ \overrightarrow{C} v_i^- v_k^- \overleftarrow{C} v_i)$ is a hamiltonian cycle of *G'*, i.e *G'* is hamiltoniania. It implies that *G* is hamiltonian, a contradiction.

Claim 5.17. $|B_1|, |B_2| \ge 2$. Moreover, $v_i^{-2} \in B_2 - \{v_j^+\}$.

Proof. Because of $v_i^+, v_k^- \in B_1$, so $|B_1| \ge 2$. If $v_i^{-2} \equiv v_j^+$, then $C' = (v_i W v_j v_j^+ v_k \overleftarrow{C} v_i^+ v_i^- v_i)$ is a hamiltonian cycle of G, a contradiction. Therefore, $v_i^{-2} \neq v_j^+$. By Claim 5.16 we have $v_i^{-2} \in B_2 - \{v_j^+\}$ and $|B_2| \ge 2$.

Claim 5.18. *There are no edges joining a vertex in* B_1 *to a vertex in* B_2 *.*

Proof. Assume to the contrary that there exists $v_{t_1} \in B_1$, $v_{t_2} \in B_2$ such that $v_{t_1}v_{t_2} \in E(G)$. Observe that $v_{t_1} \neq v_i^+$ and $v_{t_2} \neq v_j^+$. Let G^* be the graph obtain from *G* by adding new edges joining all pair of nonadjacent

vertices in the same set B_1 , respectively in B_2 (note that their degree sum is greater than n + 1). By Lemma 4.3, *G* is hamiltonian if and only if G^* is hamiltonian. We consider the graph G^* , let W_1 be the hamiltonian path of B_1 joining v_i^+ to v_{t_1} , and let W_2 be the hamiltonian path of B_2 joining v_{t_2} to v_j^+ . Then $C' = (v_i W v_j v_k v_i^+ W_1 v_{t_1} v_{t_2} W_2 v_j^+ v_i^- v_i)$ is a hamiltonian cycle of G^* , i.e G^* is hamiltonian. It implies that *G* is hamiltonian, a contradiction.

Claim 5.19. B_1 , B_2 are complete.

Proof. Assume that there exists a pair of nonadjacent vertices $v_p, v_q \in B_1$. Let $x \in H$, then the vertex set $\{x, v_p, v_q, v_j^+\}$ is independent, so $d(x) + d(v_p) + d(v_q) + d(v_j^+) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_j^+) \le |B_2| + 2$ and $d(v_p), d(v_q) \le |B_1| + 2$. Therefore, $d(x) + d(v_p) + d(v_q) + d(v_j^+) \le |H| + 2|B_1| + |B_2| + 7 = n + |B_1| + 3$. It implies that $|B_1| \ge n - 3$, a contradiction. Thus, B_1 is complete. Similarly, B_2 is complete.

Claim 5.20. v_i is not adjacent to all vertices in $B_1 - \{v_i^+\}$.

Proof. Assume to the contrary that v_i is adjacent to $v_{t_1} \in B_1 - \{v_i^+\}$. By Claim 5.19, let W_1 be the hamiltonian path of B_1 joining v_i^+ to v_{t_1} . We have $C' = (v_i W v_j v_k v_j^+ \overrightarrow{C} v_i^- v_i^+ W_1 v_{t_1} v_i)$ is a hamiltonian cycle of G, a contradiction.

Claim 5.21. v_i is not adjacent to all vertices in B_2 .

Proof. Assume to the contrary that v_i is adjacent to $v_{t_2} \in B_2$. Observe that $v_{t_2} \neq v_j^+$, otherwise $C' = (v_i W v_j \overleftarrow{C} v_i^+ v_i^- \overleftarrow{C} v_j^+ v_i)$ is a hamiltonian cycle of *G*, a contradiction. Let W_2 be the hamiltonian path of B_2 joining v_j^+ to v_{t_2} . Then, $C' = (v_i W v_j v_k \overleftarrow{C} v_i^+ v_i^- v_j^+ W_2 v_{t_2} v_i)$ is a hamiltonian cycle of *G*, a contradiction.

Figure 12. Illustrating the proof of Claim 5.21.

Similarly the proofs of Claim 5.20 and Claim 5.21, we have:

Claim 5.22. v_i is not adjacent to all vertices in $B_1 \cup (B_2 - \{v_i^+\})$.

Claim 5.23. v_i , v_j are adjacent to all vertices in H.

Proof. Assume that v_i is not adjacent to $x \in H$. Let $v_p \in B_1 - \{v_i^+\}$, $v_a \in B_2 - \{v_i^+\}$. Then by Claims 5.18, 5.20, 5.21, the vertex set $\{x, v_i, v_p, v_q\}$ is independent, so $d(x) + d(v_i) + d(v_p) + d(v_q) \ge 2n$. However, $d(x) \le |H|$, $d(v_i) \le |H| + 3$, $d(v_p) \le |B_1| + 1$, $d(v_q) \le |B_1| + 1$ $|B_2| + 1$, therefore $d(x) + d(v_i) + d(v_p) + d(v_q) \le 2|H| + |B_1| + |B_1|$ $|B_2| + 5 = n + |H| + 1$. It implies that $|H| \ge n - 1$, a contradiction. Thus, v_i is adjacent to all vertices in H. Similarly, v_i is adjacent to all vertices in H.

Claim 5.24. v_k is not adjacent to all vertices in $\{v_i\} \cup (B_2 - \{v_i^+\})$.

Proof. Assume that v_k is adjacent to $v_{t_2} \in B_2 - \{v_i^+\}$. Let W_1 be the hamiltonian path of B_1 joining v_k^- to v_i^+ , and let W_2 be the hamiltonian path of B_2 joining v_j^+ to v_{t_2} . Then, we have $C' = (v_i W v_j v_i^+ W_2 v_{t_2} v_k v_k^- W_1 v_i^+ v_i^- v_i)$ is a hamiltonian cycle of G, a contradiction. Therefore, v_k is not adjacent to all vertices in $B_2 - \{v_i^+\}$. Moreover, if v_k is adjacent to v_i , by Claim 5.17, let W'_2 be the joining to v_i^{-2} . Then, hamiltonian path B_2 v_i^+ of $C' = (v_i W v_i v_i^+ W_2' v_i^{-2} v_i^- v_i^+ W_1 v_k^- v_k v_i)$ is a hamiltonian cycle of G, a contradiction. Thus, v_k is not adjacent to v_i .

Claim 5.25. v_k is adjacent to all vertices in B_1 .

Proof. Assume to the contrary that v_k is not adjacent to $v_{t_1} \in B_1$. Let $x \in H, v_{t_2} \in B_2 - \{v_i^+\}$, then by Claim 5.18 and by Claim 5.24, the vertex set $\{x, v_k, v_{t_1}, v_{t_2}\}$ is independent, so $d(x) + d(v_k) + d(v_{t_1}) + d(v_{t$ $d(v_{t_2}) \ge 2n$. However, $d(x) \le |H| + 1$, $d(v_k) \le |B_1| + 2$, $d(v_{t_1}) \le |B_1| + 2$ $|B_1|, d(v_{t_2}) \le |B_2|.$ Therefore, $d(x) + d(v_k) + d(v_{t_1}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) + d(v_{t_1}) + d(v_{t_2}) \le d(v_{t_1}) + d(v_{t_2}) + d(v_{t_2}) + d(v_{t_1}) + d(v_{t_2}) + d(v_{t_1}) + d(v_{t_2}) + d(v_{t_1}) + d(v_{t_2}) +$ $2|B_1| + |B_2| + |H| + 3 = n + |B_1| - 1$. It implies that $|B_1| \ge n + 1$, a contradiction.

Arguing similarly the proofs of Claim 5.24 and Claim 5.25, we have:

Claim 5.26. v_i^- is not adjacent to all vertices in $\{v_i\} \cup (B_1 - \{v_i^+\})$.

Claim 5.27. v_i^- is adjacent to all vertices in B_2 .

Observe that $v_k, v_i^- \in N_C(H)^-$, by Lemma 4.1 (b) we have:

Claim 5.28. $v_k v_i^- \notin E(G)$.

Claim 5.29. $v_i v_j \in E(G)$.

Proof. Assume to the contrary that $v_i v_j \notin E(G)$. Let $v_{t_1} \in B_1 - \{v_i^+\}$, $v_{t_2} \in B_2 - \{v_j^+\}$. Then by Claims 5.18, 5.20. 5.21 and 5.22, the vertex set $\{v_i, v_j, v_{t_1}, v_{t_2}\}$ is independent, so $d(v_i) + d(v_j) + d(v_{t_1}) + d(v_{t_2}) \ge 2n$. However, $d(v_i) \le |H| + 2$, $d(v_j) \le |H| + 2$, $d(v_{t_1}) \le |B_1|$, $d(v_{t_2}) \le |B_2|$. Therefore, $d(v_i) + d(v_j) + d(v_{t_1}) + d(v_{t_2}) \le 2|H| + |B_1| + |B_2| + 4 = n + |H|$. It implies that $|H| \ge n$, a contradiction.

By Claim 5.25, $C_1 = B_1 + \{v_k\}$ is complete. By Claim 5.27, $C_2 = B_2 + \{v_i^-\}$ is complete. Moreover, by Claim 5.17, $|C_1|, |C_2| \ge 3$. By Claim 5.23 and Claim 5.29, $H_1 = H + \{v_i, v_j\}$ is complete and $|H_1| \ge 3$. Conclude that *G* is shown in Figure 13, in which H_1, C_1, C_2 are complete and $|C_1|, |C_2|, |H_1| \ge 3$.

Figure 13. Graph *G* belongs to class \mathcal{F}_3 .

Clearly, $\alpha(G) = 3$ and *G* belongs to class \mathcal{F}_3 .

Case 3.3. $v_k \neq v_i^{+2}, v_k \neq v_j^{-} and v_t \neq v_j^{+2}, v_t \neq v_i^{-}$.

Observe that $v_t^+, v_k^- \in B_1 - \{v_i^+\}$ and $v_t^-, v_k^+ \in B_2 - \{v_j^+\}$. Let G^* be the graph obtain from *G* by adding new edges joining all pair of nonadjacent vertices in the same set B_1 , respectively in B_2 (note that their degree sum is greater than n + 1). By Lemma 4.3, *G* is hamiltonian if and only if G^* is hamiltonian.

We consider the graph G^* . Let W_1 be the hamiltonian path of B_1 joining v_k^- to v_i^+ , and let W_2 be the hamiltonian path of $B_2 - v_j^+$ joining v_t^- to v_k^+ . Then, we have $C' = (v_i W v_j v_j^+ v_t v_t^- W_2 v_k^+ v_k v_k^- W_1 v_i^+ v_i)$ is a hamiltonian cycle of G^* , i.e. G^* is hamiltonian, therefore G is hamiltonian, a contradiction.

Thus, the Case 3.3 does not happen.

6. ACKNOWLEDGEMENTS

This research was supported by Vietnam National Foundation for Science and Technology Development grant 102.01-2012.29.

REFERENCES

- [1] Alan, G. Algorithmic Graph Theory. *Cambridge University Press*. Published June 27th 1985.
- [2] Bondy, J. A., and Chvátal, V. A Method in Graph Theory. *Discrete Math.* 15 (1976), pp 111-135.
- [3] Cuckler, B., and Kahn, J. Hamiltonian cycles in Dirac graphs. *Combinatorica*, 29, (2009), pp 299-326.
- [4] Diestel, R. Graph Theory. Springer. Third Edition (2005).
- [5] Ferrara, M., Jacobson, M. S., and Harris, A. Cycle lengths in a Hamiltonian Graphs with a pair of vertices having large degree sum. *Graphs and Combinatorics*, 26 (2010), pp 215-223.
- [6] Jung, H. A. On maximal circuits in finite graphs. Ann. Discrete Math., 3 (1978), pp. 129-144.
- [7] Hoa, V. D., and Truong, N. H. X. Hamilton cycle of graphs $\sigma_2^* \ge n$. Journal Of Computer Science And Cybernetics., 28, No.2 (2012), pp 153-160.
- [8] Hoa, V. D., and Truong, N. H. X. Hamiltonian in graphs $\sigma_3 \ge \frac{3}{2}n 1$. In *Proceedings* of the 7th National Conference on Fundamental and Applied Information Technology Research (FAIR'7) (Thai Nguyen, Vietnam, June 19-20, 2014). Vietnam Academy of Science and Technology Press, Hanoi, 2014, pp 60-67.
- [9] Krivelevich, M., Lee, C., and Sudakov, B. Long paths and cycle in random subgraphs of graphs with large minimum degree. *Random Structure & Algorithm*, volume 46, Issue 2, pp. 320–345, March 2015.
- [10] Nishiyama, H., Kobayashi, Y., Yamauchi, Y., Kijima, S., & Yamashita, M. (2015). The Parity Hamiltonian Cycle Problem. *arXiv preprint arXiv:1501.06323*.

This paper may be cited as:

Truong, N. H. X. and Hoa, V. D., 2015. Hamiltonian cycle in graphs $\sigma_4 \ge 2n$. International Journal of Computer Science and Business Informatics, Vol.15, No. 2, pp. 38-60.