IJCSBI.ORG

Hamiltonian cycle in graphs $\sigma_{4} \geq 2 n$

Nguyen Huu Xuan Truong
Department of Economic Information System, Academy of Finance, Vietnam
\section*{Vu Dinh Hoa}
Department of Information Technology, HaNoi National University of Education, Vietnam

Abstract

Given a simple undirected graph G with n vertices, we denote by σ_{k} the minimum value of the degree sum of any k pairwise nonadjacent vertices. The graph G is said to be hamiltonian if it contains a hamiltonian cycle (a cycle passing all vertices of G). The problem HC (Hamiltonian Cycle) is well-known a NPC-problem. A lot of authors have been studied Hamiltonian Cycles in graphs with large degree sums σ_{k}, but only for $k=1,2,3$. In this paper, we study the structure of nonhamiltonian graphs satisfying $\sigma_{4} \geq 2 n$, and we prove that the problem $H C$ for the graphs satisfying $\sigma_{4} \geq 2 n t$ is NPC for $t<1$ and is P for $t \geq 1$.

Keywords

hamiltonian cycle, $N P C, \sigma_{4}$.

1. INTRODUCTION

In this paper, we use definitions and notations in [4] with exception for K_{n} the complete graph on n vertices. We consider only simple undirected graphs. Given a graph $G=(V, E)$ on n vertices with the vertex set V and the edge set E. A set $A \subseteq V(G)$ is independent if no two of its elements are adjacent. The independent number of G, denoted by $\alpha(G)$, is defined by setting $\alpha(G)=\max$ 自 $I \mid: I \subseteq V(G)$ is independent $\}$. We use $\omega(G)$ to denote the number of connected components of G. The graph G is tough (or 1 tough) if $\omega(G-S) \leq|S|$ for every nonempty subset $S \subset V(G)$.
For two disjoint graphs G_{1} and G_{2}, we denote by $G_{1} * G_{2}$ the graph with the vertex $\operatorname{set} V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{x y \mid x \in$ $\left.V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. For example, $K_{2} * K_{3}=K_{5}$. For a positive integer $k \leq \alpha$, we define $\quad \sigma_{k}(G)=\min \left(\sum_{i=1}^{k} d\left(x_{i}\right):\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \quad\right.$ is independent $\}$. In the case $k>\alpha$, set $\sigma_{k}(G)=k(n-\alpha)$. Instead of $\sigma_{k}(G)$, sometimes we simply write σ_{k}.

If G contains a hamiltonian cycle (a cycle passing all vertices of G), then G is called hamiltonian; otherwise, G is nonhamiltonian. A graph G with a
hamiltonian path (a path passing all vertices of G) is said to be traceable. Let C_{k} be the cycle of length k. The graph G is said to be k-connected if $G-X$ is connected for any $X \subseteq V$ with $|X|<k<n$. Note that a tough graph is 2 -connected, and toughness is a necessary condition for the existence of a hamiltonian cycle in a graph [6]. There is a polynomial algorithm $O\left(n^{3}\right)$ time to recognize 2-connected graph.
The problem $H P, H C$ are well-known $N P C$-problem [1] [10].

HP (HAMILTONIAN PATH)

Instance: Graph G.
Question: Is G traceable?
HC (HAMILTONIAN CYCLE)
Instance: Graph G.
Question: Is G hamiltonian?
A lot of authors have been studied Hamiltonian Cycles in graphs with large degree sums σ_{k}, but only for $k=1,2,3$, (see [3] [5] [9], etc).

For a positive integer k, we state the problem $H C k$ as follow:

HCk

Instance: Given a real $t>0$ and a graph G satisfying $\sigma_{k} \geq \frac{k n}{2} t$.
Question: Is G hamiltonian?
In [7], [8], we prove that:
Theorem 1.1 [7]. $H C 2(t<1)$ is NPC and $H C 2(t \geq 1)$ is P.
Theorem 1.2 [8]. $H C 3(t<1)$ is NPC and $H C 3(t \geq 1)$ is P.
In this paper, we study the class of graphs satisfying $\sigma_{4} \geq 2 n$ for the problem HC4.

2. RESULTS

The following Theorem will be proved in Section 5.
Theorem 2.1. Let G be 2 -connected graph with $\sigma_{4} \geq 2 n$. If G is nonhamiltonian then $\alpha(G)=3$ and G belongs to one of the following three classes of graphs:

1. Class \mathcal{F}_{1} of 2 -connected graphs G with $\alpha(G)=3$ such that there exists a subset $S \subseteq V(G),|S|=2$ so that $G-S=K_{n_{1}} \cup K_{n_{2}} \cup K_{n_{3}}$.

IJCSBI.ORG

Figure 1. Class \mathcal{F}_{1}.
2. Class \mathcal{F}_{2} of 2-connected graphs G with $\alpha(G)=3$ such that there exists three disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, K_{n_{3}} \subseteq G$ and a vertex $x \in V(G)$ and $y_{1} \in K_{n_{1}}, y_{2} \in K_{n_{2}}, y_{3} \in K_{n_{3}}$ so that $G-\{x\}=\left(K_{n_{1}} \cup K_{n_{2}} \cup\right.$ $\left.K_{n_{3}}\right)+\left\{y_{1} y_{2}, y_{2} y_{3}, y_{3} y_{1}\right\}$. Moreover, there exists three vertices $z_{1} \in K_{n_{1}}-\left\{y_{1}\right\}, z_{2} \in K_{n_{2}}-\left\{y_{2}\right\}, z_{3} \in K_{n_{3}}-\left\{y_{3}\right\}$ such that $z_{1}, z_{2}, z_{3} \in$ $N(x)$ and x can possibly be adjacent to the another vertices.

Figure 2. Class \boldsymbol{F}_{2}.
3. Class \mathcal{F}_{3} of 2-connected graphs G with $\alpha(G)=3$ such that there exists three disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, K_{n_{3}} \subseteq G\left(\left|K_{n_{1}}\right|,\left|K_{n_{2}}\right|,\left|K_{n_{3}}\right| \geq\right.$ 3) and distinct vertices $y_{i}, z_{i} \in K_{n_{i}}$ for $i=1,2,3$ so that $G=K_{n_{1}} \cup$ $K_{n_{2}} \cup K_{n_{3}}+\left\{y_{1} y_{2}, y_{2} y_{3}, y_{3} y_{1}\right\}+\left\{z_{1} z_{2}, z_{2} z_{3}, z_{3} z_{1}\right\}$.

Figure 3. Class \boldsymbol{F}_{3}.

IJCSBI.ORG
Note that the graph $G_{n}=K_{1} * K_{1} *\left(\bar{K}_{3} * K_{n-5}\right)$ with $n \geq 11$ satisfies $\sigma_{4} \geq 2 n$ and is not 2 -connected. In Section 3, we give polynomial algorithms to recognize whether a given graph belongs to $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$.
From Theorem 2.1, we conclude the following corollary.
Corollary 2.1. Every 2 -connected graph with $\alpha \geq 4$ and $\sigma_{4} \geq 2 n$ is hamiltonian.

For $t<1$, we prove the following Theorem:
Theorem 2.2. HC4 $(t<1)$ is NPC.
Proof. The $H C 4$ is a subproblem of $H C$, so it belongs to $N P$. In order to prove $H C 4(t<1)$ is $N P C$, we will construct a polynomial transformation from the problem $H P$ to it.
For any graph G_{1} with n_{1} vertices, we choose a positive integer $m \geq$ $\max \left\{\frac{t\left(n_{1}-1\right)}{2(1-t)}, 5\right\}$. Then we construct a graph G_{2} from G_{1} by adding new vertex set $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \cup\left\{q_{1}, q_{2}, \ldots, q_{m-1}\right\}$ and the edges joining each vertex of $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ to all other vertices. In this way, we obtain the graph $G_{2}=\left(G_{1} \cup \bar{K}_{m-1}\right) * K_{m}$. This construction can be proceeded with the Turing machine in polynomial time.
We observe that the graph G_{2} has $n_{2}=n_{1}+2 m-1$ vertices and $\sigma_{4}\left(G_{2}\right)=$ $4 m$. Because of $m \geq \frac{t\left(n_{1}-1\right)}{2(1-t)}$, so $2 m \geq t\left(n_{1}+2 m-1\right)$, it implies that $\sigma_{4}\left(G_{2}\right) \geq 2 n_{2} t$.
Now we prove that G_{2} has a hamiltonian cycle if and only if G_{1} has a hamiltonian path. Indeed, if G_{1} has a hamiltonian path H then $C=$ $\left(H, p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{m-1}, q_{m-1}, p_{m}\right)$ is a hamiltonian cycle in G_{2}.
If G_{2} has a hamiltonian cycle C. Observe that $q_{i}(i=1 . . m-1)$ has only neighbor $p_{j}(j=1 . . m)$, so all vertices in $\left\{q_{1}, q_{2}, \ldots, q_{m-1}\right\}$ are only adjacent to all the vertices in $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$. Then, if we remove all vertices in $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ then we obtain m connected components, which are $\left\{q_{1}\right\},\left\{q_{2}\right\}, \ldots,\left\{q_{m-1}\right\}$ and G_{1}, each of the connected components has a hamiltonian path (the rest of C after removing $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$). Therefore, G_{1} has a hamiltonian path.
Thus, we have a polynomial transformation from $H P$ to $H C 4(t<1)$. Since $H C 4(t<1) \in N P$ and $H P \in N P C$, it implies that $H C 4(t<1) \in N P C$.

Theorem 2.3. HC4 $(t \geq 1)$ is P.
Proof. Assume that G satisfies $\sigma_{4} \geq 2 n t$ with $t \geq 1$. First, we check whether G is 2 -connected or not (it can be done in polynomial time).

IJCSBI.ORG
If G is not 2 -connected then G is nonhamiltonian.
If G is 2 -connected, then by Theorem 2.1, either G is hamiltonian or G belongs to $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ which can be recognize in polynomial time (see Section 3). Thus, $H C 4(t \geq 1)$ is P.

3. POLYNOMIAL ALGORITHMS RECOGNIZING THE CLASSES $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$

Assume that $S \subseteq V(G)$ and $H_{1}, H_{2}, \ldots, H_{k}$ are connected components of $G-S$. Note that the problem "Given a vertex set S in a graph G, determine $\omega(G-S)$ and whether every connected component of $G-S$ is complete" can be solved in polynomial time by an algorithm $O\left(n^{2}\right)$. Following, we design the polynomial algorithms recognizing the classes $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$.

3.1. Algorithm recognizing the class $\mathcal{F}_{\mathbf{1}}$

Every graph G in class \mathcal{F}_{1} is not 1 -tough. If we remove S, then we get three connected components which are complete.

Input: graph G with $\sigma_{4} \geq 2 n$.
Output: Is_Graph_ \mathcal{F}_{1} return True if $G \in \mathcal{F}_{1}$, else return False.

Algorithm:

```
Function Boolean Is_Graph_F F
Begin
    If G is not 2-connected Then Return False;
    For each S in V(G) 2 do
    If ( }\omega(G-S)=3)\mathrm{ and (the connected components
    H},\mp@subsup{H}{2}{},\mp@subsup{H}{3}{}\mathrm{ are complete) Then Return True;
    Return False;
```

End;

Checking G is not 2-connected can be done by $O\left(n^{2}\right)$ time. Next, there are C_{n}^{2} iterations, each iteration requires $O\left(n^{2}\right)$ time. Thus the overall time required by algorithm Is_Graph_ \mathcal{F}_{1} is $O\left(n^{4}\right)$.

3.2. Algorithm recognizing the class $\boldsymbol{F}_{\mathbf{2}}$

For each graph G in class \mathcal{F}_{2}, if we remove $S=\left\{x, y_{1}, y_{2}, y_{3}\right\}$, then we get three connected components H_{1}, H_{2}, H_{3} which are complete.

Input: graph G with $\sigma_{4} \geq 2 n$.
Output: Is_Graph_ \mathcal{F}_{2} return True if $G \in \mathcal{F}_{2}$, else return False.

Algorithm:

Function Boolean Is_Graph_f \boldsymbol{F}_{2};
Begin

IJCSBI.ORG

```
For each S in V(G)4}\mathrm{ do
If (\omega(G-S)=3) and (the connected components
H},\mp@subsup{H}{2}{},\mp@subsup{H}{3}{}\mathrm{ are complete) Then
```



```
        that:
            ( }|\mp@subsup{N}{\mp@subsup{H}{1}{}}{(x)|, | N NH2
            ({\mp@subsup{y}{1}{}\mp@subsup{y}{2}{},\mp@subsup{y}{2}{}\mp@subsup{y}{3}{},\mp@subsup{y}{3}{}\mp@subsup{y}{1}{}}\subseteqE(G)) and
        ( }\mp@subsup{H}{1}{}+{\mp@subsup{y}{1}{}},\mp@subsup{H}{2}{}+{\mp@subsup{y}{2}{}},\mp@subsup{H}{3}{}+{\mp@subsup{y}{3}{}}\mathrm{ are complete)
        Then Return True;
Return False;
```

End;
There are C_{n}^{4} iterations, each iteration requires $O\left(n^{2}\right)$ time, so the overall time required by algorithm Is_Graph_ \mathcal{F}_{2} is $O\left(n^{6}\right)$.
3.3. Algorithm recognizing the class \mathcal{F}_{3}

For each graph G in class \mathcal{F}_{3}, if we remove $S=\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right\}$, then we get three connected components H_{1}, H_{2}, H_{3} which are complete.

Input: graph G with $\sigma_{4} \geq 2 n$.
Output: Is_Graph_ \mathcal{F}_{3} return True if $G \in \mathcal{F}_{3}$, else return False.

Algorithm:

```
Function Boolean Is_Graph_F;
Begin
```

```
    For each S in V(G) }\mp@subsup{}{}{6}\mathrm{ do
    If (\omega(G-S)=3) and (the connected components
    H
        If there exists }\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{}\inS\mathrm{ and }S-{\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{}}
        {\mp@subsup{z}{1}{},\mp@subsup{z}{2}{},\mp@subsup{z}{3}{}} such that:
            ({\mp@subsup{y}{1}{}\mp@subsup{y}{2}{},\mp@subsup{y}{2}{}\mp@subsup{y}{3}{},\mp@subsup{y}{3}{}\mp@subsup{y}{1}{},\mp@subsup{z}{1}{}\mp@subsup{z}{2}{},\mp@subsup{z}{2}{}\mp@subsup{z}{3}{},\mp@subsup{z}{3}{}\mp@subsup{z}{1}{}}\subseteqE(G)) and
            (H1+{\mp@subsup{y}{1}{},\mp@subsup{z}{1}{}},\mp@subsup{H}{2}{}+{\mp@subsup{y}{2}{},\mp@subsup{z}{2}{}},\mp@subsup{H}{3}{}+{\mp@subsup{y}{3}{},\mp@subsup{z}{3}{}}\mathrm{ are complete)}
        Then Return True;
    Return False;
```

End;

There are C_{n}^{6} iterations, each iteration requires $O\left(n^{2}\right)$ time, so the overall time required by algorithm Is_Graph \mathcal{F}_{3} is $O\left(n^{8}\right)$.

4. PRELIMINARIES

For what follows we assume that C is a longest cycle of G. On \vec{C} (C with a given orientation), we denote the predecessor and successor (along \vec{C}) by x^{-}, x^{+}, and $x^{++}=\left(x^{+}\right)^{+}, x^{--}=\left(x^{-}\right)^{-}$. In general, for a positive integer i, $x^{+i}=\left(x^{+(i-1)}\right)^{+}$and $x^{-i}=\left(x^{-(i-1)}\right)^{-}$. Moreover, for a vertex set $A \subseteq$ $V(C)$, we wirte $A^{+}=\left\{x^{+}: x \in A\right\}$ and $A^{-}=\left\{x^{-}: x \in A\right\}$. The path joining two vertices x and y of C, along \vec{C}, is denoted by $x \vec{C} y$, and the same path in reverse order are given by $y \overleftarrow{C} x$.

In this paper, we consider the paths and cycles as vertex sets. If x, y are the end vertices of a path P, sometimes we write $x P y$ instead of P.
Assume that H is a connected component of $G-C$ and $N_{C}(H)$ is the set of neighbors in C of all vertices in H. A edge sequence is a path joining two vertices on C and its inner vertices belong to $G-C-H$. In particular, an edge joining 2 non-consecutive vertices on C is also a edge sequence.

Lemma 4.1. Let G be a 2-connected graph. If G is nonhamiltonian and H is a connected component of $G-C$ then
(a) $N_{C}(H) \cap N_{C}(H)^{+}=N_{C}(H) \cap N_{C}(H)^{-}=\emptyset$.
(b) There is no edge sequence joining 2 vertices of $N_{C}(H)^{+}$. Similarly, there is no edge sequence joining 2 vertices of $N_{C}(H)^{-}$.
(c) If $v_{i}, v_{j} \in N_{C}(H)$ for $i \neq j$ then there is no vertex $z \in v_{i}^{+} \vec{C} v_{j}$ such that $\left\{v_{i}^{+} z^{+}, v_{j}^{+} z\right\} \subseteq E(G)$. Similarly, there is no vertex $z \in v_{j}^{+} \vec{C} v_{i}$ such that $\left\{v_{j}^{+} z^{+}, v_{i}^{+} z\right\} \subseteq E(G)$.
(d) For any $x \in H$ and for any $v_{i} \in N_{C}(H), d(x)+d\left(v_{i}^{+}\right) \leq n-1$.

Proof. (a), (b), (c) are presented in [2], so we will prove (d). For any $x \in H$, $d(x)=\left|N_{H}(x)\right|+\left|N_{C}(x)\right| \leq|H|-1+\left|N_{C}(H)\right|$. By (a) and (b), $d\left(v_{i}^{+}\right) \leq$ $(|G|-|H|)-\left|N_{C}(H)^{+}\right|=|G|-|H|-\left|N_{C}(H)\right|$, so $d(x)+d\left(v_{i}^{+}\right) \leq|H|-$ $1+\left|N_{C}(H)\right|+|G|-|H|-\left|N_{C}(H)\right|=|G|-1=n-1$.

Lemma 4.2 [2]. Assume that u, v are nonadjacent vertices and $d(u)+$ $d(v) \geq n$. Then G is hamiltonian if and only if $G+u v$ is hamiltonian.

We conclude the following Lemma from Lemma 4.2.
Lemma 4.3. Assume that $G^{*} \supseteq G$ such that $V\left(G^{*}\right)=V(G)$ and $d_{G}(u)+$ $d_{G}(v) \geq n$ for any edge $u v \in E\left(G^{*}\right)-E(G)$. Then G is hamiltonian if and only if G^{*} is hamiltonian.

5. PROOFS OF THEOREM 2.1

For what follows, we assume that G is nonhamiltonian. Because G is 2connected, so G is cycleable. Let $H_{1}, H_{2}, \ldots, H_{m}$ be the connected components of $G-C$. Clearly, $\left|N_{C}\left(H_{i}\right)\right| \geq 2$ for any $i=1$.. m.

Proposition 5.1. $H_{1}, H_{2}, \ldots, H_{m}$ are complete graphs.
Proof. We consider a connected component $H_{t}(t=1$.. m). Because G is 2connected, so $\left|N_{C}\left(H_{t}\right)\right| \geq 2$ and there are at least two vertices $v_{i}, v_{j} \in$ $N_{C}\left(H_{t}\right)$. If H_{t} is not complete then there are two distinct vertices $x, y \in H_{t}$ such that $x y \notin E(G)$. By Lemma $4.1(\mathrm{a}, \mathrm{b}),\left\{x, y, v_{i}^{+}, v_{j}^{+}\right\}$is an independent vertex set, therefore by $\sigma_{4} \geq 2 n, d(x)+d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. However, by Lemma $4.1(\mathrm{~d}), d(x)+d\left(v_{i}^{+}\right) \leq n-1$ and $d(y)+d\left(v_{j}^{+}\right) \leq$ $n-1$, it implies that $d(x)+d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \leq 2 n-2$, a contradiction. Thus, H_{t} is complete, and we have $H_{1}, H_{2}, \ldots, H_{m}$ are complete graphs.

Proposition 5.2. $\left|N_{C}\left(H_{t}\right)\right| \leq \frac{|C|}{2}$ for every $t=1 . . m$.
Proof. By Lemma 4.1 (a), $N_{C}\left(H_{t}\right) \cap N_{C}\left(H_{t}\right)^{+}=\emptyset$, therefore $|C| \geq$ $\left|N_{C}\left(H_{t}\right) \cup N_{C}\left(H_{t}\right)^{+}\right|=2\left|N_{C}\left(H_{t}\right)\right|$, it implies that $\left|N_{C}\left(H_{t}\right)\right| \leq \frac{|C|}{2}$.

Proposition 5.3. $m=1$.
Proof. We consider the case of m as follow:
a) $m \geq 4$.

Let $x_{i} \in H_{i}$ for each $i=1$..4. Clearly, the vertex set $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is independent, by $\sigma_{4} \geq 2 n$ we have $d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)+d\left(x_{4}\right) \geq 2 n$. Moreover, by Proposition 5.2 and $m \geq 4, d\left(x_{i}\right) \leq\left|H_{i}\right|-1+\left|N_{C}\left(H_{i}\right)\right| \leq$ $\left|H_{i}\right|-1+\frac{|C|}{2}$, so $d\left(x_{1}\right)+d\left(x_{2}\right)+d\left(x_{3}\right)+d\left(x_{4}\right) \leq\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right|+$ $\left|H_{4}\right|+2|C|-4 \leq n+|C|-4$, therefore $n+|C|-4 \geq 2 n$, it implies that $|C| \geq n+4$, a contradiction.
Thus, the case $m \geq 4$ does not happen.
b) $m=3$.

Let $x \in H_{1}, y \in H_{2}, z \in H_{3}$ and we consider each vertex $v_{i} \in N_{C}\left(H_{1}\right)$.
Claim 5.1. $v_{i}^{+} \in N(y) \cup N(z)$.
Proof. Assume to the contrary that $v_{i}^{+} \notin N(y) \cup N(z)$, then the vertex set $\left\{x, y, z, v_{i}^{+}\right\}$is independent, by $\sigma_{4} \geq 2 n$ we have $d(x)+d(y)+$ $d(z)+d\left(v_{i}^{+}\right) \geq 2 n$. By Lemma 4.1 (d), $d(x)+d\left(v_{i}^{+}\right) \leq n-1$.

IJCSBI.ORG

Moreover, by Proposition 5.2 we have $d(y) \leq\left|H_{2}\right|-1+\frac{|C|}{2}$ and $d(z) \leq\left|H_{3}\right|-1+\frac{|C|}{2}$. Therefore, $d(x)+d(y)+d(z)+d\left(v_{i}^{+}\right) \leq n-$ $3+\left|H_{2}\right|+\left|H_{3}\right|+|C|<2 n-3$, a contradiction.
Claim 5.2. $\left|N_{C}\left(H_{1}\right)\right|=\left|N_{C}\left(H_{2}\right)\right|=\left|N_{C}\left(H_{3}\right)\right|=2$.
Proof. If $\left|N_{C}\left(H_{1}\right)\right| \geq 3$ then by Claim 5.1, there are at least two vertices $v_{i}, v_{j} \in N_{C}\left(H_{1}\right)$ such that $v_{i}^{+}, v_{j}^{+} \in N(y)$ or $v_{i}^{+}, v_{j}^{+} \in N(z)$, therefore there exists an edge sequence joining v_{i}^{+}, v_{j}^{+}, which contradicts to Lemma 4.1 (b). Thus, $\left|N_{C}\left(H_{1}\right)\right|=2$. Similarly, we have $\left|N_{C}\left(H_{2}\right)\right|=$ $\left|N_{C}\left(H_{3}\right)\right|=2$.

Claim 5.3. $5 \leq|C| \leq 6$.
Proof. If there exists $v \in C$ such that $v \notin N_{C}\left(H_{1}\right) \cup N_{C}\left(H_{2}\right) \cup N_{C}\left(H_{3}\right)$, then the vertex set $\{x, y, z, v\}$ is independent, by $\sigma_{4} \geq 2 n$ we have $d(x)+d(y)+d(z)+d(v) \geq 2 n$. However, $\quad d(x) \leq\left|H_{1}\right|-1+$ $\left|N_{C}\left(H_{1}\right)\right|=\left|H_{1}\right|+1, d(y) \leq\left|H_{2}\right|+1, d(z) \leq\left|H_{3}\right|+1, d(v) \leq|C|-$ 1 , so $d(x)+d(y)+d(z)+d(v) \leq\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right|+|C|+2=$ $n+2$. It implies that $n+2 \geq 2 n$ and $n \leq 2$, a contradiction. Therefore, $N_{C}\left(H_{1}\right) \cup N_{C}\left(H_{2}\right) \cup N_{C}\left(H_{3}\right)=|C|, \quad$ and by Claim 5.2, $\quad|C| \leq 6$. Moreover, by Lemma 4.1 (a), $|C| \geq 4$. If $|C|=4$ then by Lemma 4.1 (a) and Claim 5.1, there exists an edge sequence joining two vertices in $N_{C}\left(H_{1}\right)^{+}$, which contradicts Lemma 4.1 (b). Thus, we have $5 \leq|C| \leq 6$.
If $|C|=5$, so $C=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Without loss of generality, by Lemma 4.1 (a, b) and Claim 5.1, we assume that $v_{1}, v_{3} \in N_{C}\left(H_{1}\right), v_{2} \in N_{C}\left(H_{2}\right)$, $v_{4} \in N_{C}\left(H_{3}\right)$. Then, $v_{5} \in N_{C}\left(H_{2}\right)$ and $N_{C}\left(H_{2}\right)^{+}=\left\{v_{1}, v_{3}\right\}$. It implies that there exists an edge sequence joining two vertices in $N_{C}\left(H_{2}\right)^{+}$, which contradicts Lemma 4.1 (b). Therefore, by Claim 5.3, $|C|=6$, so $C=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$ and by Claim 5.2, $N_{C}\left(H_{1}\right) \cap N_{C}\left(H_{2}\right)=N_{C}\left(H_{2}\right) \cap$ $N_{C}\left(H_{3}\right)=N_{C}\left(H_{1}\right) \cap N_{C}\left(H_{3}\right)=\emptyset$. Without loss of generality, by Lemma $4.1(\mathrm{a}, \mathrm{b})$ and Claim 5.1, there are two possible case as follow:
(1) Case $v_{1}, v_{3} \in N_{C}\left(H_{1}\right), \quad v_{2} \in N_{C}\left(H_{2}\right), \quad v_{4} \in N_{C}\left(H_{3}\right)$. Observe that $v_{6} \in N_{C}\left(H_{3}\right)$ and $v_{5} \in N_{C}\left(H_{2}\right)$. Let W_{1}, W_{2}, W_{3} be the paths in H_{1}, H_{2}, H_{3} joining the pair of vertices $\left(v_{1}, v_{3}\right),\left(v_{2}, v_{5}\right),\left(v_{4}, v_{6}\right)$ respectively. Then, we have $C^{\prime}=\left(v_{1} W_{1} v_{3} v_{2} W_{2} v_{5} v_{4} W_{3} v_{6} v_{1}\right)$ is longer than C, which contradicts the fact that C is a longest cycle of G.
(2) Case $v_{1}, v_{4} \in N_{C}\left(H_{1}\right), \quad v_{2} \in N_{C}\left(H_{2}\right), \quad v_{5} \in N_{C}\left(H_{3}\right)$. Observe that $v_{6} \in N_{C}\left(H_{2}\right)$ and $v_{3} \in N_{C}\left(H_{3}\right)$. Let W_{1}, W_{2}, W_{3} be the paths in H_{1}, H_{2}, H_{3} joining the pair of vertices $\left(v_{1}, v_{4}\right),\left(v_{2}, v_{6}\right),\left(v_{3}, v_{5}\right)$ respectively. The, we have $C^{\prime}=\left(v_{1} W_{1} v_{4}, v_{3} W_{3} v_{5}, v_{6} W_{2} v_{2}, v_{1}\right)$ is longer than C, a contradiction.

Thus, the case $m=3$ does not happen.
c) $m=2$.

Without loss of generality, assume that $\left|H_{1}\right|+\left|N_{C}\left(H_{1}\right)\right| \geq\left|H_{2}\right|+$ $\left|N_{C}\left(H_{2}\right)\right|$.

Claim 5.4. $\left|N_{C}\left(H_{1}\right)\right|=2$.
Proof. By $\left|N_{C}\left(H_{1}\right)\right| \geq 2$, assume to contrary that $\left|N_{C}\left(H_{1}\right)\right| \geq 3$. Let $x \in H_{1}, y \in H_{2}$. By Lemma 4.1 (b) there exists two vertices $v_{i}^{+}, v_{j}^{+} \in$ $N_{C}\left(H_{1}\right)^{+}-N_{C}\left(H_{2}\right)$. By Lemma $4.1(\mathrm{a}, \mathrm{b})$, the vertex set $\left\{x, y, v_{i}^{+}, v_{j}^{+}\right\}$is independent, so $d(x)+d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. By Lemma 4.1 (d), $d(x)+d\left(v_{i}^{+}\right) \leq n-1$. Moreover, $d(y) \leq\left|H_{2}\right|-1+\left|N_{C}\left(H_{2}\right)\right| \leq$ $\left|H_{1}\right|-1+\left|N_{C}\left(H_{1}\right)\right|, d\left(v_{j}^{+}\right) \leq n-\left|H_{1}\right|-\left|N_{C}\left(H_{1}\right)\right|$. Therefore $d(x)+$ $d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \leq 2 n-2$, a contradiction. Thus, $\left|N_{C}\left(H_{1}\right)\right|=2$.
Claim 5.5. $\left|N_{C}\left(H_{2}\right)\right|=2$.
Proof. Assume to contrary that $\left|N_{C}\left(H_{2}\right)\right| \geq 3$. Arguing similarly the proof of Claim 5.4, there exists two vertices $v_{i}^{+}, v_{j}^{+} \in N_{C}\left(H_{2}\right)^{+}-$ $N_{C}\left(H_{1}\right)$. Let $x \in H_{1}, y \in H_{2}$. By Lemma $4.1(\mathrm{a}, \mathrm{b})$, the vertex set $\left\{x, y, v_{i}^{+}, v_{j}^{+}\right\}$is independent, so $d(x)+d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. By Lemma 4.1 (b) and by $v_{i}^{+} \notin N\left(H_{1}\right) \cup N\left(H_{2}\right), d\left(v_{i}^{+}\right) \leq|C|-$ $\left|N_{C}\left(H_{2}\right)\right|$. Moreover, $d(x) \leq\left|H_{1}\right|-1+\left|N_{C}\left(H_{1}\right)\right|=\left|H_{1}\right|+1, d(y) \leq$ $\left|H_{2}\right|-1+\left|N_{C}\left(H_{2}\right)\right|, \quad d\left(v_{j}^{+}\right) \leq|C|-\left|N_{C}\left(H_{2}\right)\right| \leq|C|-2 \leq n-4$. Therefore, $\quad d(x)+d(y)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \leq\left|H_{1}\right|+\left|H_{2}\right|+|C|+n-$ $4=2 n-4$, a contradiction. Thus, $\left|N_{C}\left(H_{2}\right)\right|=2$.

By arguing similarly above, observe that $\left|N_{C}\left(H_{1}\right)^{+} \cap N_{C}\left(H_{2}\right)\right|=1=$ $\left|N_{C}\left(H_{2}\right)^{+} \cap N_{C}\left(H_{1}\right)\right|$. Without loss of generality, we assume that $N_{C}\left(H_{2}\right)=$ $\left\{v_{i}, v_{i}^{+2}\right\}, N_{C}\left(H_{1}\right)=\left\{v_{j}, v_{i}^{+}\right\}$with $v_{j} \neq v_{i}^{+3}$ and $v_{j}^{+} \neq v_{i}$. Because G is 2connected and C is a longest cycle of G, so $\left|H_{2}\right|=1$, i.e $H_{2}=\{y\}$. Let $x \in H_{1}$ and W_{1} be the path in H_{1} joining v_{i}^{+}to v_{j}.

Figure 4. Illustrating the proofs of part c), Proposition 5.3.

If $v_{i}^{+3} v_{j}^{+} \in E(G)$ then $C^{\prime}=\left(v_{i} y v_{i}^{+2} v_{i}^{+} W_{1} v_{j} \overleftarrow{C} v_{i}^{+3} v_{j}^{+} \vec{C} v_{i}\right)$ is longer than C, a contradiction. Therefore, $v_{i}^{+3} v_{j}^{+} \notin E(G)$ and the vertex set $\left\{x, y, v_{i}^{+3}, v_{j}^{+}\right\}$ is independent, so $d(x)+d(y)+d\left(v_{i}^{+3}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. However, by Lemma 4.1 (d), $d(y)+d\left(v_{i}^{+3}\right) \leq n-1$ and $(x)+d\left(v_{j}^{+}\right) \leq n-1$, it implies that $d(x)+d(y)+d\left(v_{i}^{+3}\right)+d\left(v_{j}^{+}\right) \leq 2 n-2$, a contradiction.
Thus, the case $m=2$ does not happen.
By these case a), b), c) do not happen, we finish the proof that $m=1$. Then $G-C$ has only one connected component. For what follows, let H be the connected component of $G-C$. The fact that $H=G-C$. By Proposition 5.1, H is complete.

Proposition 5.4. $\left|N_{C}(H)\right|=2$.
Proof. Clearly, $\left|N_{C}(H)\right| \geq 2$ by G is 2-connected. Assume that $\left|N_{C}(H)\right| \geq$ 3. For any two vertices $v_{i}, v_{j} \in N_{C}(H)$, let $v_{k} \in N_{C}(H)-\left\{v_{i}, v_{j}\right\}$ and $x \in$ H, then by Lemma 4.1 (b) the vertex set $\left\{x, v_{i}^{+}, v_{j}^{+}, v_{k}^{+}\right\}$is independent. So $d(x)+d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right)+d\left(v_{k}^{+}\right) \geq 2 n$. However, by Lemma 4.1 (d), $(x)+d\left(v_{k}^{+}\right) \leq n-1$, it implies that $d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \geq n+1$.
By G is 2 -connected and H is complete, there exists two vertices $v_{i_{0}}, v_{j_{0}} \in$ $N_{C}(H)$ and a hamiltonian path W in H joining $v_{i_{0}}$ to $v_{j_{0}}$. Then $C=$ $\left(v_{i_{0}} W v_{j_{0}} \overleftarrow{C} v_{i_{0}}^{+} v_{j_{0}}^{+} \vec{C} v_{i_{0}}\right)$ is a hamiltonian cycle of graph $G^{\prime}=G+v_{i_{0}}^{+} v_{j_{0}}^{+}$, i.e. G^{\prime} is hamiltonian. By Lemma 4.2, G is hamiltonian if and only if G^{\prime} is hamiltonian, therefore G is hamiltonian, which contradicts to the assumption that G is nonhamiltonian. Thus, $\left|N_{C}(H)\right|=2$.

For what follows, let v_{i}, v_{j} be two vertices of $N_{C}(H)$ and let W be the hamiltonian path of H joining v_{i}, v_{j}.

Proposition 5.5. $N\left(v_{i}^{+}\right) \cup N\left(v_{j}^{+}\right)=C-\left\{v_{i}^{+}, v_{j}^{+}\right\}$.
Proof. Assume to the contrary that there exists $v_{k} \in C-\left\{v_{i}^{+}, v_{j}^{+}\right\}$such that $v_{k} \notin N\left(v_{i}^{+}\right) \cup N\left(v_{j}^{+}\right)$. Clearly, $v_{k} \notin\left\{v_{i}, v_{j}\right\}$. Let $x \in H$, then by Lemma 4.1 (b), the vertex set $\left\{x, v_{i}^{+}, v_{j}^{+}, v_{k}\right\}$ is independent, so $d(x)+d\left(v_{i}^{+}\right)+$ $d\left(v_{j}^{+}\right)+d\left(v_{k}\right) \geq 2 n$. However, $d(x) \leq|H|+1, d\left(v_{k}\right) \leq|C|-3$, it implies that $d\left(v_{i}^{+}\right)+d\left(v_{j}^{+}\right) \geq 2 n-|H|-|C|+2=n+2$. Therefore, by Lemma 4.2, G is hamiltonian if and only if $G^{\prime}=G+v_{i}^{+} v_{j}^{+}$is hamiltonian. Observe that $C^{\prime}=\left(v_{i} W v_{j} \overleftarrow{C} v_{i}^{+} v_{j}^{+} \vec{C} v_{i}\right)$ is a hamiltonian cycle of G^{\prime}, i.e G^{\prime} is hamiltonian, it implies that G is hamiltonian, a contradiction.

Now we consider two case of toughness of G.

I. G is not 1-tough

By G is not 1 -tough, there exists a vertex set $S \neq \emptyset$ such that $G-S$ has at least $|S|+1$ connected components. By G is 2 -connected, $|S| \geq 2$. Since $n-|S| \geq \omega(G-S) \geq|S|+1$ so $2|S| \leq n-1$.

Claim 5.6. $S \cap H=\emptyset$.
Proof. Observe that $G-H=C$ is 1-tough, if $H-S=\emptyset$ then $\omega(G-$ $S)=\omega(C-S) \leq|S|$, which contradicts to the fact that $\omega(G-S) \geq$ $|S|+1$. Therefore, $H-S \neq \emptyset$. Let $S \cap H=S_{H}, S \cap C=S_{C}$. If $\left|S_{H}\right| \geq 1$ then $\omega(G-S) \leq 1+\omega\left(C-S_{C}\right) \leq 1+\left|S_{C}\right| \leq|S|, \quad$ a contradiction. Thus, $\left|S_{H}\right|=0$, i.e $S \cap H=\emptyset$.
Observe that $v_{i}, v_{j} \in S$, otherwise $\omega(G-S) \leq \omega(C-S) \leq|S|, \quad$ a contradiction. Therefore, H is a connected component of $G-S$. Let $H, T_{1}, T_{2}, \ldots, T_{k}(k \geq|S|)$ be the connected components of $G-S$.

Claim 5.7. $k=|S|=2$
Proof. Assume that $k \geq 3$. Let $x \in H, y_{1} \in T_{1}, y_{2} \in T_{2}, y_{3} \in T_{3}$, then the vertex set $\left\{x, y_{1}, y_{2}, y_{3}\right\}$ is independent, so $d(x)+d\left(y_{1}\right)+d\left(y_{2}\right)+$ $d\left(y_{3}\right) \geq 2 n$. Observe that $d(x) \leq|H|+1$ and $d\left(y_{i}\right) \leq\left|T_{i}\right|-1+|S|$ for any $i=1,2,3$. Therefore, $d(x)+d\left(y_{1}\right)+d\left(y_{2}\right)+d\left(y_{3}\right) \leq|H|+$ $\left|T_{1}\right|+\left|T_{2}\right|+\left|T_{3}\right|+3|S|-2 \leq 2|S|-2+(n-k+3)=2|S|+n-$ $k+1$. It implies that $2|S|+n-k+1 \geq 2 n$, i.e $2|S| \geq n+k-1 \geq$ $n+2$ (by $k \geq 3$), which contradicts to the fact that $2|\mathrm{~S}| \leq \mathrm{n}-1$. Therefore $\mathrm{k} \leq 2$. By $k \geq|S| \geq 2$, we have $k=|S|=2$.
By Claim 5.7 and by $v_{i}, v_{j} \in S$ we have $S=\left\{v_{i}, v_{j}\right\}$ and $G-S$ has three connected components, such as H, T_{1}, T_{2}. By Proposition 5.5, $T_{1}=\left(\left\{v_{i}^{+}\right\} \cup\right.$ $N\left(v_{i}^{+}\right)-\left\{v_{i}, v_{j}\right\}$ and $T_{2}=\left(\left\{v_{j}^{+}\right\} \cup N\left(v_{j}^{+}\right)-\left\{v_{i}, v_{j}\right\}\right.$.

Claim 5.8. T_{1}, T_{2} is complete.
Proof. Assume that T_{1} is not complete. Then there exists pair of nonadjacent vertices $y, z \in T_{1}$. Let $x \in H$, then the vertex set $\left\{x, y, z, v_{j}^{+}\right\}$ is independent, so $d(x)+d(y)+d(z)+d\left(v_{j}^{+}\right) \geq 2 n$. However, $d(x) \leq|H|+1, d\left(v_{j}^{+}\right) \leq\left|T_{2}\right|+1, d(y) \leq\left|T_{1}\right|, d(z) \leq\left|T_{1}\right|$. Therefore $d(x)+d(y)+d(z)+d\left(v_{j}^{+}\right) \leq|H|+2\left|T_{1}\right|+\left|T_{2}\right|+2=n+\left|T_{1}\right| . \quad$ It implies that $n+\left|T_{1}\right| \geq 2 n$, i.e $\left|T_{1}\right| \geq n$, a contradiction. Thus, T_{1} is complete. Similarly, we have T_{2} is complete.

IJCSBI.ORG

Figure 5. Graph \boldsymbol{G} belongs to class $\mathcal{F}_{\boldsymbol{1}}$.
Clearly, $3 \leq \alpha(G) \leq 5$. If $\alpha(G) \geq 4$, there exists a independent set of four vertices, whose elements are $x \in H, y \in T_{1}, z \in T_{2}$ and a vertex in S (without loss of generality, assume that the vertex in S is v_{i}). By $\sigma_{4} \geq 2 n$, we have $d(x)+d(y)+d(z)+d\left(v_{i}\right) \geq 2 n$. However, $d(x) \leq|H|+1$, $d\left(v_{i}\right) \leq n-4, d(y) \leq\left|T_{1}\right|, d(z) \leq\left|T_{2}\right|$. It implies that $d(x)+d(y)+$ $d(z)+d\left(v_{i}\right) \leq|H|+\left|T_{1}\right|+\left|T_{2}\right|+n-3=2 n-5$, a contradiction. Thus, $\alpha(G)=3$.

Conclude that in this Case G is not 1-tough, G belongs to class \mathcal{F}_{1}.

II. G is 1-tough

Let $P_{1}=N\left(v_{i}^{+}\right) \cup\left\{v_{i}^{+}\right\}, P_{2}=N\left(v_{j}^{+}\right) \cup\left\{v_{j}^{+}\right\}$. By Lemma 4.1 (c) and Proposition 5.5, we have P_{1}, P_{2} are two paths on C satisfying $\left\{v_{i}, v_{i}^{+}, v_{i}^{+2}\right\} \subseteq P_{1}$, $\left\{v_{j}, v_{j}^{+}, v_{j}^{+2}\right\} \subseteq P_{2}, P_{1} \cup P_{2}=C$ and if $v \in P_{1} \cap P_{2}$ then v is an end vertex of both P_{1}, P_{2}.
Let $A_{1}=P_{1}-\left\{v_{i}\right\}, A_{2}=P_{2}-\left\{v_{j}\right\}$. Clearly, $\left|A_{1} \cap A_{2}\right| \leq 2$. We consider three case of $\left|A_{1} \cap A_{2}\right|$.

Case 1. $A_{1} \cap A_{2}=\emptyset$.

Figure 6. Illustrating the Case 1.

IJCSBI.ORG
Observe that there exists an edge joining a vertex $v_{k} \in A_{1}$ to a vertex $v_{t} \in A_{2}$, otherwise $\omega\left(G-\left\{v_{i}, v_{j}\right\}\right)=3$, which contradicts to the fact that G is 1-tough.
If there exists pair of nonadjacent vertices $v_{i_{1}}, v_{i_{2}} \in A_{1}$, let $x \in H$, then the vertex set $\left\{x, v_{i_{1}}, v_{i_{2}}, v_{j}^{+}\right\}$is independent, so $d(x)+d\left(v_{i_{1}}\right)+d\left(v_{i_{2}}\right)+$ $d\left(v_{j}^{+}\right) \geq 2 n$. By Lemma $4.1(\mathrm{~d}), d(x)+d\left(v_{j}^{+}\right) \leq n-1$, we have $d\left(v_{i_{1}}\right)+$ $d\left(v_{i_{2}}\right) \geq n+1$. By Lemma 4.2, G is hamiltonian if and only if $G^{\prime}=G+$ $v_{i_{1}} v_{i_{2}}$ is hamiltonian.

Arguing similarly, for any pair of nonadjacent vertices $v_{j_{1}}, v_{j_{2}} \in A_{2}$, we have $d\left(v_{j_{1}}\right)+d\left(v_{j_{2}}\right) \geq n+1$ and G is hamiltonian if and only if $G^{\prime \prime}=G+$ $v_{j_{1}} v_{j_{2}}$ is hamiltonian.
Let G^{*} be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set A_{1}, respectively in A_{2}. By Lemma 4.3, G is hamiltonian if and only if G^{*} is hamiltonian. We consider graph G^{*}, let W_{1} be the hamiltonian path of A_{1} joining v_{i}^{+}to v_{k}, and let W_{2} be the hamiltonian path of A_{2} joining v_{t} to v_{j}^{+}. Then, we have $C^{\prime}=\left(v_{i} v_{i}^{+} W_{1} v_{k} v_{t} W_{2} v_{j}^{+} v_{j} W v_{i}\right)$ is a hamiltonian cycle in G^{*}, i.e G^{*} is hamiltonian. Therefore, G is hamiltonian, a contradiction.
Thus, the Case 1 does not happen.
Case 2. $\left|A_{1} \cap A_{2}\right|=1$.
Let $A_{1} \cap A_{2}=\left\{v_{k}\right\}$. Without loss of generality, assume that $v_{k} \in v_{i}^{+2} \vec{C} v_{j}^{-}$ $\left(v_{i}^{+2} \neq v_{j}\right)$.

Figure 7. Illustrating the Case 2.
Case 2.1. $v_{k} \equiv v_{i}^{+2}$.
If $|H|>1$ then $C^{\prime}=\left(v_{i} W v_{j} \overleftarrow{C} v_{k} v_{j}^{+} \vec{C} v_{i}\right)$ is longer than C. Therefore, $|H|=1$, let $H=\{x\}$. If $v_{i}^{-} \in N\left(v_{i}^{+}\right)$then $C^{\prime}=\left(v_{i} x v_{j} \overleftarrow{C} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle in G a contradiction. Therefore, $v_{i}^{-} \notin N\left(v_{i}^{+}\right)$, and by Proposition 5.5, $v_{i}^{-} \in N\left(v_{j}^{+}\right)$and $d\left(v_{i}^{+}\right)=2$.

IJCSBI.ORG
We consider subgraph $B_{2}=A_{2}-\left\{v_{k}\right\}=v_{k} \vec{C} v_{i}^{-}-\left\{v_{k}, v_{j}\right\}$. If there exists pair of nonadjacent vertices $v_{t_{1}}, v_{t_{2}} \in B_{2}$ then the vertex set $\left\{x, v_{i}^{+}, v_{t_{1}}, v_{t_{2}}\right\}$ is independent, so $d(x)+d\left(v_{i}^{+}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \geq 2 n$. However, $d(x)=d\left(v_{i}^{+}\right)=2 \quad$ and $\quad d\left(v_{t_{1}}\right), d\left(v_{t_{2}}\right) \leq|C|-3=n-4$, therefore $d(x)+d\left(v_{i}^{+}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \leq 2 n-4$, a contradiction. Thus, B_{2} is complete.
If $v_{j}^{-} \neq v_{k}$ then $v_{i}^{-}, v_{j}^{-} \in B_{2}$, so $v_{i}^{-} v_{j}^{-} \in E(G)$, which contradicts to Lemma 4.1 (b). Therefore $v_{j}^{-} \equiv v_{k}$.
Because G is 1 -tough, nonhamiltonian, so $n \geq 7$ and $v_{i}^{-} \neq v_{j}^{+}$. If there exists a vertex $v_{t} \in v_{j}^{+2} \vec{C} v_{i}^{-}$is adjacent to v_{j} then we have $C^{\prime}=$ $\left(v_{i} x v_{j} v_{t} \vec{C} v_{i}^{-} v_{t}^{-} \overleftarrow{C} v_{j}^{+} v_{k} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle in G, a contradiction. Therefore, v_{j} is not adjacent to all vertices in $v_{j}^{+2} \vec{C} v_{i}^{-}$.
Similarly, if there exists a vertex $v_{t} \in v_{j}^{+2} \vec{C} v_{i}^{-}$is adjacent to v_{k} then we have $C^{\prime}=\left(v_{i} x v_{j} \vec{C} v_{t}^{-} v_{i}^{-} \overleftarrow{C} v_{t} v_{k} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle in G, a contradiction. Therefore, v_{k} is not adjacent to all vertices in $v_{j}^{+2} \vec{C} v_{i}^{-}$.
Conclude that the graph G is shown in Figure 8, v_{i} can possibly be adjacent to another vertices:

Figure 8. Graph \boldsymbol{G} belongs to class $\mathcal{F}_{\mathbf{2}}$.
Clearly, $\alpha(G)=3$ and G belongs to class \mathcal{F}_{2}.
Case 2.2. $v_{k} \neq v_{i}^{+2}$ and $v_{k} \equiv v_{j}^{-}$.
Clearly, $v_{k}^{-} \neq v_{i}^{+}$. If $v_{i}^{-} v_{k}^{-} \in E(G)$, then $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{k}^{-} \overleftarrow{C} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Therefore, $v_{i}^{-} v_{k}^{-} \notin E(G)$. By $v_{k} \equiv v_{j}^{-}$and by Lemma $4.1(\mathrm{~b}), v_{i}^{-} v_{k} \notin E(G)$, so $v_{i}^{-} \neq v_{j}^{+}$by $v_{k} \in N\left(v_{j}^{+}\right)$. We have the following Claims.

Claim 5.9. $v_{i}^{-} \in A_{2}-A_{1}$.
Proof. Assume that $v_{i}^{-} \in A_{1}$. Let $x \in H$, then the vertex set $\left\{x, v_{j}^{+}, v_{i}^{-}, v_{k}^{-}\right\}$is independent, so $d(x)+d\left(v_{j}^{+}\right)+d\left(v_{i}^{-}\right)+d\left(v_{k}^{-}\right) \geq$

IJCSBI.ORG
2n. By Lemma 4.1 (d), $d(x)+d\left(v_{j}^{+}\right) \leq n-1$ and $d\left(v_{i}^{-}\right)+d\left(v_{k}^{-}\right) \geq$ $n+1$. Therefore, by Lemma 4.2, G is hamiltonian if and only if $G^{\prime}=$ $G+v_{i}^{-} v_{k}^{-}$is hamiltonian. Observe that $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{k}^{-} \overleftarrow{C} v_{i}\right)$ is a hamiltonian cycle of G^{\prime}, so G^{\prime} and G are hamiltonian, a contradiction. Thus, $v_{i}^{-} \notin A_{1}$, and by $P_{1} \cup P_{2}=C$ we have $v_{i}^{-} \in A_{2}-A_{1}$.

Figure 9. Illustrating the Claim 5.9.
Let $B_{1}=A_{1}-\left\{v_{k}\right\}=v_{i}^{+} \vec{C} v_{k}^{-}, B_{2}=A_{2}-\left\{v_{k}\right\}=v_{j}^{+} \vec{C} v_{i}^{-}$. By $v_{i}^{-} \neq v_{j}^{+}$ and by $v_{k}^{-} \neq v_{i}^{+}$we have $\left|B_{1}\right|,\left|B_{2}\right| \geq 2$. Arguing similarly, for any pair of nonadjacent vertices (y, z) in the same set B_{1}, respectively in B_{2}, we have $d(y)+d(z) \geq n+1$.

Claim 5.10. There are no edges joining a vertex in B_{1} to a vertex in B_{2}.
Proof. Assume to the contrary that there exists an edge joining $v_{t_{1}} \in B_{1}$ to $v_{t_{2}} \in B_{2}$. Clearly, $v_{t_{1}} \neq v_{i}^{+}, v_{t_{2}} \neq v_{j}^{+}$. Let G^{*} be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set B_{1}, respectively in B_{2}. By Lemma $4.3, G$ is hamiltonian if and only if G^{*} is hamiltonian.
We consider graph G^{*}, observe that B_{1}, B_{2} are complete. Let W_{1} be the hamiltonian path in B_{1} joining $v_{t_{1}}$ to v_{i}^{+}and let W_{2} be the path in B_{2} joining v_{j}^{+}to $v_{t_{2}}$. Then, $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{j}^{+} W_{2} v_{t_{2}} v_{t_{1}} W_{1} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G^{*}, i.e G^{*} is hamiltonian, it implies that G is hamiltonian, a contradiction.

Claim 5.11. B_{1}, B_{2} are complete.
Proof. Assume that there exists a pair of nonadjacent vertices $v_{i_{1}}, v_{i_{2}} \in$ B_{1}. Let $x \in H$, then the vertex set $\left\{x, v_{i_{1}}, v_{i_{2}}, v_{j}^{+}\right\}$is independent, so $d(x)+d\left(v_{i_{1}}\right)+d\left(v_{i_{2}}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. However, $d(x) \leq|H|+1$, $d\left(v_{j}^{+}\right) \leq\left|B_{2}\right|+2$ and $d\left(v_{i_{1}}\right), d\left(v_{i_{2}}\right) \leq\left|B_{1}\right|+1$, therefore $d(x)+$ $d\left(v_{i_{1}}\right)+d\left(v_{i_{2}}\right)+d\left(v_{j}^{+}\right) \leq|H|+2\left|B_{1}\right|+\left|B_{2}\right|+5=n+\left|B_{1}\right|+2$. It implies that $\left|B_{1}\right| \geq n-2$, a contradiction. Thus, B_{1} is complete. Similarly, we have B_{2} is complete.

Claim 5.12. v_{k}, v_{j} are not adjacent to any vertex in $B_{2}-\left\{v_{j}^{+}\right\}$.

IJCSBI.ORG
Proof. Assume that v_{k} is adjacent to a vertex $v_{p} \in B_{2}-\left\{v_{j}^{+}\right\}$. By Claim 5.11, let W_{1} be the hamiltonian path of B_{1} joining v_{k}^{-}to v_{i}^{+}, and let W_{2} be the hamiltonian path of B_{2} joining v_{j}^{+}to v_{p}. Then, $C^{\prime}=\left(v_{i} W v_{j} v_{j}^{+} W_{2} v_{p} v_{k} v_{k}^{-} W_{1} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Similarly, if v_{j} is adjacent to a vertex $v_{q} \in B_{2}-\left\{v_{j}^{+}\right\}$, let W_{2}^{*} be the hamiltonian path of B_{2} joining v_{q} to v_{j}^{+}, then $C^{\prime}=$ $\left(v_{i} W v_{j} v_{q} W_{2}^{*} v_{j}^{+} v_{k} v_{k}^{-} W_{1} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Thus, v_{k}, v_{j} are not adjacent to any vertex in $B_{2}-\left\{v_{j}^{+}\right\}$.

Claim 5.13. v_{j} is not adjacent to any vertex in B_{1}.
Proof. Assume to the contrary that v_{j} is adjacent to a vertex $v_{p} \in B_{1}$. Let W_{2} be the hamiltonian path of B_{2} joining v_{j}^{+}to v_{i}^{-}. It happens as one of two following case:
(1) Case $v_{p} \neq v_{i}^{+}$: Let W_{1} be the hamiltonian path of B_{1} joining v_{p} to v_{i}^{+}, we have $C^{\prime}=\left(v_{i} W v_{j} v_{p} W_{1} v_{i}^{+} v_{k} v_{j}^{+} W_{2} v_{i}^{-} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction.
(2) Case $v_{p} \equiv v_{i}^{+}$: Let W_{1} be the hamiltonian path of B_{1} joining v_{p} to v_{k}^{-}, we have $C^{\prime}=\left(v_{i} W v_{j} v_{p} W_{1} v_{k}^{-} v_{k} v_{j}^{+} W_{2} v_{i}^{-} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction.
Claim 5.14. v_{j} is adjacent to all vertices in H.
Proof. Assume to the contrary that v_{j} is not adjacent to a vertex $x \in H$. Let $v_{t_{1}} \in B_{1}, v_{t_{2}} \in B_{2}-\left\{v_{j}^{+}\right\}$, then by Claims 5.10, 5.12, 5.13, the vertex set $\left\{x, v_{j}, v_{t_{1}}, v_{t_{2}}\right\}$ is independent, so $d(x)+d\left(v_{j}\right)+d\left(v_{t_{1}}\right)+$ $d\left(v_{t_{2}}\right) \geq 2 n$. However, $d(x) \leq|H|, d\left(v_{j}\right) \leq|H|+2, d\left(v_{t_{1}}\right) \leq\left|B_{1}\right|+$ $1, d\left(v_{t_{2}}\right) \leq\left|B_{2}\right|$. Therefore, $2 n \leq d(x)+d\left(v_{j}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \leq$ $2|H|+\left|B_{1}\right|+\left|B_{2}\right|+3=n+|H|, \quad$ it implies that $|H| \geq n, \quad$ a contradiction.

Claim 5.15. v_{k} is adjacent to all vertices in B_{1}.
Proof. Assume to the contrary that v_{k} is not a vertex $v_{t_{1}} \in B_{1}$. Let $x \in H$ and $v_{t_{2}} \in B_{2}-\left\{v_{j}^{+}\right\}$. Then by Claim 5.10 and by Claim 5.12, the vertex set $\left\{x, v_{k}, v_{t_{1}}, v_{t_{2}}\right\}$ is independent, so $d(x)+d\left(v_{k}\right)+d\left(v_{t_{1}}\right)+$ $d\left(v_{t_{2}}\right) \geq 2 n$. However, $d(x) \leq|H|+1, d\left(v_{k}\right) \leq\left|B_{1}\right|+2, d\left(v_{t_{1}}\right) \leq$ $\left|B_{1}\right|, \quad d\left(v_{t_{2}}\right) \leq\left|B_{2}\right|$. Therefore, $\quad d(x)+d\left(v_{k}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \leq$ $|H|+2\left|B_{1}\right|+\left|B_{2}\right|+3=n+\left|B_{1}\right|$, it implies that $\left|B_{1}\right| \geq n, \quad$ a contradiction.

Let $H_{1}=H+\left\{v_{j}\right\}$, by Claim 5.14, H_{1} is complete. By Claim 5.15, $A_{1}=$ $B_{1}+\left\{v_{k}\right\}$ is complete. The graph G is shown in Figure 10, in which,

IJCSBI.ORG
H_{1}, A_{1}, B_{2} are complete and $\left|H_{1}\right|,\left|A_{1}\right|,\left|B_{2}\right| \geq 2$. Moreover, the vertex v_{i} can possibly be adjacent to another vertices.

Figure 10. Graph \boldsymbol{G} belongs to class $\mathcal{F}_{\mathbf{2}}$.
Clearly, $3 \leq \alpha(G) \leq 4$. If $\alpha(G)=4$, then there exists $x \in H_{1}, y \in A_{1}, z \in$ B_{2} such that the vertex set $\left\{x, y, z, v_{i}\right\}$ is independent, so $d(x)+d(y)+$ $d(z)+d\left(v_{i}\right) \geq 2 n$. However, $d(x)+d(y)+d(z) \leq\left|H_{1}\right|+\left|A_{1}\right|+\left|A_{2}\right|-$ $1=n-2$, therefore $d\left(v_{i}\right) \geq n+2$, a contradiction. Thus $\alpha(G)=3$.
Conclude that in this Case 2.2, G belongs to class \mathcal{F}_{2}.
Case 2.3. $v_{k} \neq v_{i}^{+2}$ and $v_{k} \neq v_{j}^{-}$.
Arguing similarly the proofs of Case 2.2, let $B_{1}=A_{1}-\left\{v_{k}\right\}$ and $B_{2}=A_{2}-$ $\left\{v_{k}\right\}$, then for any pair of nonadjacent vertices (y, z) together in B_{1} or B_{2}, we have $d(y)+d(z) \geq n+1$. Observe that $v_{i}^{+} \neq v_{k}^{-} \in B_{1}$ and $v_{j}, v_{j}^{+} \neq$ $v_{k}^{+} \in B_{2}$.

Let G^{*} be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set B_{1}, respectively in B_{2}. By Lemma 4.3, G is hamiltonian if and only if G^{*} is hamiltonian. We consider graph G^{*}, let W_{1} be the hamiltonian path of B_{1} joining v_{k}^{-}to v_{i}^{+}, and let W_{2} be the hamiltonian path of B_{2} joining v_{j}^{+}to v_{k}^{+}. Then, we have $C^{\prime}=\left(v_{i} W v_{j} v_{j}^{+} W_{2} v_{k}^{+} v_{k} v_{k}^{-} W_{1} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G^{*}, i.e G^{*} is hamiltonian. Therefore, G is hamiltonian, a contradiction.
Thus, the Case 2.3 does not happen.
Case 3. $\left|A_{1} \cap A_{2}\right|=2$.
Let $A_{1} \cap A_{2}=\left\{v_{k}, v_{t}\right\}$. Without loss of generality, we assume that $v_{k} \in$ $v_{i}^{+2} \vec{C} v_{j}^{-}\left(v_{i}^{+2} \neq v_{j}\right)$ and $v_{t} \in v_{j}^{+2} \vec{C} v_{i}^{-}\left(v_{j}^{+2} \neq v_{i}\right)$. Let $B_{1}=A_{1}-\left\{v_{k}, v_{t}\right\}$, $B_{2}=A_{2}-\left\{v_{k}, v_{t}\right\}$. Arguing similarly the proofs of Case 2.2, for any pair of nonadjacent vertices (y, z) in the same set B_{1}, respectively in B_{2}, we get $d(y)+d(z) \geq n+1$.

IJCSBI.ORG

Figure 11. Illustrating the Case 3.
Case 3.1. $v_{k} \equiv v_{i}^{+2}$ or $v_{t} \equiv v_{j}^{+2}$.
Without loss of generality, assume that $v_{k} \equiv v_{i}^{+2}$. If $v_{i}^{-} \in N\left(v_{i}^{+}\right)$then we have $C^{\prime}=\left(v_{i} W v_{j} \overleftarrow{C} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Therefore $v_{i}^{-} \notin N\left(v_{i}^{+}\right)$, i.e $v_{i}^{-} \notin A_{1}$ and $v_{i}^{-} \in A_{2}$. It implies that there is no vertex $v_{t} \in v_{j}^{+2} \vec{C} v_{i}^{-}$such that $v_{t} \in A_{1} \cap A_{2}$, a contradiction.

Thus, the Case 3.1 does not happen.
Case 3.2. $\left(v_{k} \neq v_{i}^{+2}\right.$ and $\left.v_{k} \equiv v_{j}^{-}\right)$or $\left(v_{t} \neq v_{j}^{+2}\right.$ and $\left.v_{t} \equiv v_{i}^{-}\right)$.
Without loss of generality, assume that $v_{k} \neq v_{i}^{+2}$ and $v_{k} \equiv v_{j}^{-}$. We have the following Claims:

Claim 5.16. $v_{t} \equiv v_{i}^{-}$.
Proof. Assume to the contrary that $v_{t} \neq v_{i}^{-}$. Arguing similarly the proofs of Case 2.2, we have $v_{i}^{-} v_{k}^{-} \notin E(G)$ and $d\left(v_{i}^{-}\right)+d\left(v_{k}^{-}\right) \geq n+1$. By Lemma 4.2, G is hamiltonian if and only if $G=G+v_{i}^{-} v_{k}^{-}$is hamiltonian. Observe that $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{k}^{-} \overleftarrow{C} v_{i}\right)$ is a hamiltonian cycle of G^{\prime}, i.e G^{\prime} is hamiltoniania. It implies that G is hamiltonian, a contradiction.
Claim 5.17. $\left|B_{1}\right|,\left|B_{2}\right| \geq 2$. Moreover, $v_{i}^{-2} \in B_{2}-\left\{v_{j}^{+}\right\}$.
Proof. Because of $v_{i}^{+}, v_{k}^{-} \in B_{1}$, so $\left|B_{1}\right| \geq 2$. If $v_{i}^{-2} \equiv v_{j}^{+}$, then $C^{\prime}=$ $\left(v_{i} W v_{j} v_{j}^{+} v_{k} \overleftarrow{C} v_{i}^{+} v_{i}^{-} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Therefore, $v_{i}^{-2} \neq v_{j}^{+}$. By Claim 5.16 we have $v_{i}^{-2} \in B_{2}-\left\{v_{j}^{+}\right\}$and $\left|B_{2}\right| \geq 2$.
Claim 5.18. There are no edges joining a vertex in B_{1} to a vertex in B_{2}.
Proof. Assume to the contrary that there exists $v_{t_{1}} \in B_{1}, v_{t_{2}} \in B_{2}$ such that $v_{t_{1}} v_{t_{2}} \in E(G)$. Observe that $v_{t_{1}} \neq v_{i}^{+}$and $v_{t_{2}} \neq v_{j}^{+}$. Let G^{*} be the graph obtain from G by adding new edges joining all pair of nonadjacent

IJCSBI.ORG
vertices in the same set B_{1}, respectively in B_{2} (note that their degree sum is greater than $n+1$). By Lemma 4.3, G is hamiltonian if and only if G^{*} is hamiltonian. We consider the graph G^{*}, let W_{1} be the hamiltonian path of B_{1} joining v_{i}^{+}to $v_{t_{1}}$, and let W_{2} be the hamiltonian path of B_{2} joining $v_{t_{2}}$ to v_{j}^{+}. Then $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{i}^{+} W_{1} v_{t_{1}} v_{t_{2}} W_{2} v_{j}^{+} v_{i}^{-} v_{i}\right)$ is a hamiltonian cycle of G^{*}, i.e G^{*} is hamiltonian. It implies that G is hamiltonian, a contradiction.

Claim 5.19. B_{1}, B_{2} are complete.
Proof. Assume that there exists a pair of nonadjacent vertices $v_{p}, v_{q} \in$ B_{1}. Let $x \in H$, then the vertex set $\left\{x, v_{p}, v_{q}, v_{j}^{+}\right\}$is independent, so $d(x)+d\left(v_{p}\right)+d\left(v_{q}\right)+d\left(v_{j}^{+}\right) \geq 2 n$. However, $\quad d(x) \leq|H|+1$, $d\left(v_{j}^{+}\right) \leq\left|B_{2}\right|+2 \quad$ and $\quad d\left(v_{p}\right), d\left(v_{q}\right) \leq\left|B_{1}\right|+2$. Therefore, $d(x)+$ $d\left(v_{p}\right)+d\left(v_{q}\right)+d\left(v_{j}^{+}\right) \leq|H|+2\left|B_{1}\right|+\left|B_{2}\right|+7=n+\left|B_{1}\right|+3$. It implies that $\left|B_{1}\right| \geq n-3$, a contradiction. Thus, B_{1} is complete. Similarly, B_{2} is complete.
Claim 5.20. v_{i} is not adjacent to all vertices in $B_{1}-\left\{v_{i}^{+}\right\}$.
Proof. Assume to the contrary that v_{i} is adjacent to $v_{t_{1}} \in B_{1}-\left\{v_{i}^{+}\right\}$. By Claim 5.19, let W_{1} be the hamiltonian path of B_{1} joining v_{i}^{+}to $v_{t_{1}}$. We have $C^{\prime}=\left(v_{i} W v_{j} v_{k} v_{j}^{+} \vec{C} v_{i}^{-} v_{i}^{+} W_{1} v_{t_{1}} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction.

Claim 5.21. v_{i} is not adjacent to all vertices in B_{2}.
Proof. Assume to the contrary that v_{i} is adjacent to $v_{t_{2}} \in B_{2}$. Observe that $v_{t_{2}} \neq v_{j}^{+}$, otherwise $C^{\prime}=\left(v_{i} W v_{j} \overleftarrow{C} v_{i}^{+} v_{i}^{-} \overleftarrow{C} v_{j}^{+} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Let W_{2} be the hamiltonian path of B_{2} joining v_{j}^{+}to $v_{t_{2}}$. Then, $C^{\prime}=\left(v_{i} W v_{j} v_{k} \overleftarrow{C} v_{i}^{+} v_{i}^{-} v_{j}^{+} W_{2} v_{t_{2}} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction.

Figure 12. Illustrating the proof of Claim 5.21.

IJCSBI.ORG
Similarly the proofs of Claim 5.20 and Claim 5.21, we have:
Claim 5.22. v_{j} is not adjacent to all vertices in $B_{1} \cup\left(B_{2}-\left\{v_{j}^{+}\right\}\right)$.
Claim 5.23. v_{i}, v_{j} are adjacent to all vertices in H.
Proof. Assume that v_{i} is not adjacent to $x \in H$. Let $v_{p} \in B_{1}-\left\{v_{i}^{+}\right\}$, $v_{q} \in B_{2}-\left\{v_{j}^{+}\right\}$. Then by Claims 5.18, 5.20, 5.21, the vertex set $\left\{x, v_{i}, v_{p}, v_{q}\right\}$ is independent, so $d(x)+d\left(v_{i}\right)+d\left(v_{p}\right)+d\left(v_{q}\right) \geq 2 n$. However, $d(x) \leq|H|, d\left(v_{i}\right) \leq|H|+3, \quad d\left(v_{p}\right) \leq\left|B_{1}\right|+1, d\left(v_{q}\right) \leq$ $\left|B_{2}\right|+1$, therefore $d(x)+d\left(v_{i}\right)+d\left(v_{p}\right)+d\left(v_{q}\right) \leq 2|H|+\left|B_{1}\right|+$ $\left|B_{2}\right|+5=n+|H|+1$. It implies that $|H| \geq n-1$, a contradiction. Thus, v_{i} is adjacent to all vertices in H. Similarly, v_{j} is adjacent to all vertices in H.
Claim 5.24. v_{k} is not adjacent to all vertices in $\left\{v_{i}\right\} \cup\left(B_{2}-\left\{v_{j}^{+}\right\}\right)$.
Proof. Assume that v_{k} is adjacent to $v_{t_{2}} \in B_{2}-\left\{v_{j}^{+}\right\}$. Let W_{1} be the hamiltonian path of B_{1} joining v_{k}^{-}to v_{i}^{+}, and let W_{2} be the hamiltonian path of B_{2} joining v_{j}^{+}to $v_{t_{2}}$. Then, we have $C^{\prime}=\left(v_{i} W v_{j} v_{j}^{+} W_{2} v_{t_{2}} v_{k} v_{k}^{-} W_{1} v_{i}^{+} v_{i}^{-} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Therefore, v_{k} is not adjacent to all vertices in $B_{2}-\left\{v_{j}^{+}\right\}$. Moreover, if v_{k} is adjacent to v_{i}, by Claim 5.17, let W_{2}^{\prime} be the hamiltonian path of B_{2} joining v_{j}^{+}to v_{i}^{-2}. Then, $C^{\prime}=\left(v_{i} W v_{j} v_{j}^{+} W_{2}^{\prime} v_{i}^{-2} v_{i}^{-} v_{i}^{+} W_{1} v_{k}^{-} v_{k} v_{i}\right)$ is a hamiltonian cycle of G, a contradiction. Thus, v_{k} is not adjacent to v_{i}.
Claim 5.25. v_{k} is adjacent to all vertices in B_{1}.
Proof. Assume to the contrary that v_{k} is not adjacent to $v_{t_{1}} \in B_{1}$. Let $x \in H, v_{t_{2}} \in B_{2}-\left\{v_{j}^{+}\right\}$, then by Claim 5.18 and by Claim 5.24, the vertex set $\left\{x, v_{k}, v_{t_{1}}, v_{t_{2}}\right\}$ is independent, so $d(x)+d\left(v_{k}\right)+d\left(v_{t_{1}}\right)+$ $d\left(v_{t_{2}}\right) \geq 2 n$. However, $d(x) \leq|H|+1, d\left(v_{k}\right) \leq\left|B_{1}\right|+2, d\left(v_{t_{1}}\right) \leq$ $\left|B_{1}\right|, \quad d\left(v_{t_{2}}\right) \leq\left|B_{2}\right|$. Therefore, $\quad d(x)+d\left(v_{k}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \leq$ $2\left|B_{1}\right|+\left|B_{2}\right|+|H|+3=n+\left|B_{1}\right|-1$. It implies that $\left|B_{1}\right| \geq n+1$, a contradiction.

Arguing similarly the proofs of Claim 5.24 and Claim 5.25, we have:
Claim 5.26. v_{i}^{-}is not adjacent to all vertices in $\left\{v_{j}\right\} \cup\left(B_{1}-\left\{v_{i}^{+}\right\}\right)$.
Claim 5.27. v_{i}^{-}is adjacent to all vertices in B_{2}.
Observe that $v_{k}, v_{i}^{-} \in N_{C}(H)^{-}$, by Lemma 4.1 (b) we have:
Claim 5.28. $v_{k} v_{i}^{-} \notin E(G)$.

IJCSBI.ORG
Claim 5.29. $v_{i} v_{j} \in E(G)$.
Proof. Assume to the contrary that $v_{i} v_{j} \notin E(G)$. Let $v_{t_{1}} \in B_{1}-\left\{v_{i}^{+}\right\}$, $v_{t_{2}} \in B_{2}-\left\{v_{j}^{+}\right\}$. Then by Claims 5.18, 5.20. 5.21 and 5.22, the vertex set $\left\{v_{i}, v_{j}, v_{t_{1}}, v_{t_{2}}\right\}$ is independent, so $d\left(v_{i}\right)+d\left(v_{j}\right)+d\left(v_{t_{1}}\right)+$ $d\left(v_{t_{2}}\right) \geq 2 n$. However, $d\left(v_{i}\right) \leq|H|+2, d\left(v_{j}\right) \leq|H|+2, d\left(v_{t_{1}}\right) \leq$ $\left|B_{1}\right|, \quad d\left(v_{t_{2}}\right) \leq\left|B_{2}\right|$. Therefore, $\quad d\left(v_{i}\right)+d\left(v_{j}\right)+d\left(v_{t_{1}}\right)+d\left(v_{t_{2}}\right) \leq$ $2|H|+\left|B_{1}\right|+\left|B_{2}\right|+4=n+|H|$. It implies that $|H| \geq n$, a contradiction.

By Claim 5.25, $C_{1}=B_{1}+\left\{v_{k}\right\}$ is complete. By Claim 5.27, $C_{2}=B_{2}+$ $\left\{v_{i}^{-}\right\}$is complete. Moreover, by Claim 5.17, $\left|C_{1}\right|,\left|C_{2}\right| \geq 3$. By Claim 5.23 and Claim 5.29, $H_{1}=H+\left\{v_{i}, v_{j}\right\}$ is complete and $\left|H_{1}\right| \geq 3$. Conclude that G is shown in Figure 13, in which H_{1}, C_{1}, C_{2} are complete and $\left|C_{1}\right|,\left|C_{2}\right|,\left|H_{1}\right| \geq 3$.

Figure 13. Graph \boldsymbol{G} belongs to class $\mathcal{F}_{\mathbf{3}}$.
Clearly, $\alpha(G)=3$ and G belongs to class \mathcal{F}_{3}.
Case 3.3. $v_{k} \neq v_{i}^{+2}, v_{k} \neq v_{j}^{-}$and $v_{t} \neq v_{j}^{+2}, v_{t} \neq v_{i}^{-}$.
Observe that $v_{t}^{+}, v_{k}^{-} \in B_{1}-\left\{v_{i}^{+}\right\}$and $v_{t}^{-}, v_{k}^{+} \in B_{2}-\left\{v_{j}^{+}\right\}$. Let G^{*} be the graph obtain from G by adding new edges joining all pair of nonadjacent vertices in the same set B_{1}, respectively in B_{2} (note that their degree sum is greater than $n+1$). By Lemma 4.3, G is hamiltonian if and only if G^{*} is hamiltonian.

We consider the graph G^{*}. Let W_{1} be the hamiltonian path of B_{1} joining v_{k}^{-} to v_{i}^{+}, and let W_{2} be the hamiltonian path of $B_{2}-v_{j}^{+}$joining v_{t}^{-}to v_{k}^{+}. Then, we have $C^{\prime}=\left(v_{i} W v_{j} v_{j}^{+} v_{t} v_{t}^{-} W_{2} v_{k}^{+} v_{k} v_{k}^{-} W_{1} v_{i}^{+} v_{i}\right)$ is a hamiltonian cycle of G^{*}, i.e G^{*} is hamiltonian, therefore G is hamiltonian, a contradiction.

Thus, the Case 3.3 does not happen.

IJCSBI.ORG

6. ACKNOWLEDGEMENTS

This research was supported by Vietnam National Foundation for Science and Technology Development grant 102.01-2012.29.

REFERENCES

[1] Alan, G. Algorithmic Graph Theory. Cambridge University Press. Published June 27th 1985.
[2] Bondy, J. A., and Chvátal, V. A Method in Graph Theory. Discrete Math. 15 (1976), pp 111-135.
[3] Cuckler, B., and Kahn, J. Hamiltonian cycles in Dirac graphs. Combinatorica, 29, (2009), pp 299-326.
[4] Diestel, R. Graph Theory. Springer. Third Edition (2005).
[5] Ferrara, M., Jacobson, M. S., and Harris, A. Cycle lengths in a Hamiltonian Graphs with a pair of vertices having large degree sum. Graphs and Combinatorics, 26 (2010), pp 215-223.
[6] Jung, H. A. On maximal circuits in finite graphs. Ann. Discrete Math., 3 (1978), pp. 129-144.
[7] Hoa, V. D., and Truong, N. H. X. Hamilton cycle of graphs $\sigma_{2}^{*} \geq n$. Journal Of Computer Science And Cybernetics., 28, No. 2 (2012), pp 153-160.
[8] Hoa, V. D., and Truong, N. H. X. Hamiltonian in graphs $\sigma_{3} \geq \frac{3}{2} n-1$. In Proceedings of the $7^{\text {th }}$ National Conference on Fundamental and Applied Information Technology Research (FAIR'7) (Thai Nguyen, Vietnam, June 19-20, 2014). Vietnam Academy of Science and Technology Press, Hanoi, 2014, pp 60-67.
[9] Krivelevich, M., Lee, C., and Sudakov, B. Long paths and cycle in random subgraphs of graphs with large minimum degree. Random Structure \& Algorithm, volume 46, Issue 2, pp. 320-345, March 2015.
[10]Nishiyama, H., Kobayashi, Y., Yamauchi, Y., Kijima, S., \& Yamashita, M. (2015). The Parity Hamiltonian Cycle Problem. arXiv preprint arXiv:1501.06323.

This paper may be cited as:
Truong, N. H. X. and Hoa, V. D., 2015. Hamiltonian cycle in graphs $\sigma_{4} \geq 2 \mathrm{n}$. International Journal of Computer Science and Business Informatics, Vol.15, No. 2, pp. 38-60.

