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ABSTRACT

Given a simple undirected graph G with n vertices, we denote by a; the minimum value of
the degree sum of any k pairwise nonadjacent vertices. The graph G is said to be
hamiltonian if it contains a hamiltonian cycle (a cycle passing all vertices of G). The
problem HC (Hamiltonian Cycle) is well-known a NPC-problem. A lot of authors have
been studied Hamiltonian Cycles in graphs with large degree sums oy, but only for
k =1,2,3. In this paper, we study the structure of nonhamiltonian graphs satisfying
o, = 2n, and we prove that the problem HC for the graphs satisfying o, = 2nt is NPC for
t<landisP fort > 1.

Keywords
hamiltonian cycle, NPC, g,.

1. INTRODUCTION

In this paper, we use definitions and notations in [4] with exception for K,
the complete graph on n vertices. We consider only simple undirected
graphs. Given a graph G = (V, E) on n vertices with the vertex set V and the
edge set E. A set A € V(G) is independent if no two of its elements are
adjacent. The independent number of G, denoted by a(G), is defined by
setting a(G) = maxi{I|: 1 < V(G) is independent}. We use w(G) to denote
the number of connected components of G. The graph G is tough (or 1-
tough) if w(G — S) < |S|for every nonempty subset S c V(G).

For two disjoint graphs G; and G,, we denote by G; * G, the graph with the
vertex setV(G;)UV(G,) and the edge setE(G;)UE(G))U{xy|x€
V(Gy), y € V(G,)}. For example, K, * K3 = Ks. For a positive integer
k<a, we define 0¢,(G)= mini?ﬁﬂ-‘zl d(x;): {xq,x2, ., X1 } is
independent}. In the case k > «a, set 0, (G) = k(n — ). Instead of ¢, (G),
sometimes we simply write gy,.

If G contains a hamiltonian cycle (a cycle passing all vertices of G), then G
is called hamiltonian; otherwise, G is nonhamiltonian. A graph G with a
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hamiltonian path (a path passing all vertices of G) is said to be traceable.
Let C) be the cycle of length k. The graph G is said to be k-connected if
G — X is connected for any X € V with [X| < k <n. Note that a tough
graph is 2-connected, and toughness is a necessary condition for the
existence of a hamiltonian cycle in a graph [6]. There is a polynomial
algorithm 0(n3) time to recognize 2-connected graph.

The problem HP, HC are well-known NPC-problem [1] [10].

HP (HAMILTONIAN PATH)
Instance: Graph G.
Question: Is G traceable?

HC (HAMILTONIAN CYCLE)
Instance: Graph G.
Question: Is G hamiltonian?

A lot of authors have been studied Hamiltonian Cycles in graphs with large
degree sums oy, but only for k = 1, 2,3, (see [3] [5] [9], etc).

For a positive integer k, we state the problem HCk as follow:

HCk
Instance: Given areal t > 0 and a graph G satisfying g, > %nt.
Question: Is G hamiltonian?

In [7], [8], we prove that:
Theorem 1.1 [7]. HC2(t < 1) iSs NPC and HC2(t = 1) is P.
Theorem 1.2 [8]. HC3(t < 1) isNPC and HC3(t = 1) is P.

In this paper, we study the class of graphs satisfying g, = 2n for the
problem HC4.

2. RESULTS
The following Theorem will be proved in Section 5.

Theorem 2.1. Let G be 2-connected graph with g, =2n. If G is
nonhamiltonian then a(G) = 3 and G belongs to one of the following three
classes of graphs:

1. Class F; of 2-connected graphs G with a(G) = 3 such that there exists
asubset S € V(G),|S| =2sothatG —S =K, , UK,, UK,_.
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Figure 1. Class F,.

2. Class F, of 2-connected graphs G with a(G) = 3 such that there exists
three disjoint complete graphs K,, , K,,, K,, € G and a vertex x € V(G)
and y, €K,,, ¥, €K,,, y3 E€K,, so that ¢ —{x} = (K,, U K,, U
K,,) + {y1¥2,¥2¥3,¥3y1}. Moreover, there exists three vertices
z1 € Ky, — {1}, 22 € Ky, — {2}, 23 € Ky, —{y3} such that zy, z,, 23 €
N(x) and x can possibly be adjacent to the another vertices.

K‘nz / \. K‘ng
3 Z3
¥z ¥z

Figure 2. Class F,.

3. Class F; of 2-connected graphs G with a(G) = 3 such that there exists
three disjoint complete graphs K, , K,,, K., S G (|Ku, | |Kn, |, [Knsy| =

3) and distinct vertices y;,z; € K,, for i =1,2,3 so that G = K,,, U
Kn, UKy, + 012, Y23, Y3Y1} + {2122, 2223, 2321 }.
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Figure 3. Class F.
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Note that the graph G, = K; * Ky = (K3 * K,,_s) with n > 11 satisfies

o4 = 2n and is not 2-connected. In Section 3, we give polynomial
algorithms to recognize whether a given graph belongs to F; U F, U F3.

From Theorem 2.1, we conclude the following corollary.

Corollary 2.1. Every 2-connected graph with ¢ >4 and g, = 2n is
hamiltonian.

For t < 1, we prove the following Theorem:
Theorem 2.2. HC4 (t < 1) is NPC.

Proof. The HC4 is a subproblem of HC, so it belongs to NP. In order to
prove HC4 (t < 1) is NPC, we will construct a polynomial transformation
from the problem HP to it.

For any graph G; with n; vertices, we choose a positive integer m >

max {tz('gll__:)) ,5}. Then we construct a graph G, from G; by adding new

vertex set {p1,p2, ..., Pm} Y {91, 92, .., qm-1} and the edges joining each
vertex of {p;,p,,...,pn} to all other vertices. In this way, we obtain the
graph G, = (G; U K,,_) * K,,. This construction can be proceeded with the
Turing machine in polynomial time.

We observe that the graph G, has n, = n; + 2m — 1 vertices and 0,(G,) =

tz(?f__tl))’ so 2m > t(n; +2m — 1), it implies that

4m. Because of m >
0'4(62) = ant.

Now we prove that G, has a hamiltonian cycle if and only if G; has a
hamiltonian path. Indeed, if G; has a hamiltonian path H then C =
(H,01,91, P2, 92, -+ »Pm—1, Gm—1, Pm) 1S @ hamiltonian cycle in G,.

If G, has a hamiltonian cycle C. Observe that g; (i = 1..m — 1) has only
neighbor p; (j = 1..m), so all vertices in {qy,qz,..,qn—1} are only
adjacent to all the vertices in {p1, py, ..., by }- Then, if we remove all vertices
in {py,p,, ...,pm} then we obtain m connected components, which are
{q1}, {92}, ..., . {qm—-1} and G, each of the connected components has a
hamiltonian path (the rest of C after removing {p,p,, ..., pn}). Therefore,
G, has a hamiltonian path.

Thus, we have a polynomial transformation from HP to HC4(t < 1). Since
HC4(t <1) € NP and HP € NPC, itimpliesthat HC4 (t < 1) € NPC.

Theorem 2.3. HC4 (t = 1) is P.

Proof. Assume that G satisfies o, = 2nt with t > 1. First, we check
whether G is 2-connected or not (it can be done in polynomial time).
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If G is not 2-connected then G is nonhamiltonian.

If G is 2-connected, then by Theorem 2.1, either G is hamiltonian or G
belongs to F; U F, U F3 which can be recognize in polynomial time (see
Section 3). Thus, HC4 (t = 1) is P.

3. POLYNOMIAL ALGORITHMS RECOGNIZING THE CLASSES
Fi, Fu, Fs

Assume that S € V(G) and Hy, H,, ...., H, are connected components of

G — S. Note that the problem “Given a vertex set S in a graph G, determine

w(G — S) and whether every connected component of G — S is complete”

can be solved in polynomial time by an algorithm O(n?). Following, we

design the polynomial algorithms recognizing the classes F;, F,, Fs.

3.1. Algorithm recognizing the class F,
Every graph G in class F; is not 1-tough. If we remove S, then we get three
connected components which are complete.

Input: graph G with g, > 2n.

Output: Is_Graph_F; return True if G € F;, else return False.

Algorithm:

Function Boolean Is_Graph F;
Begin
If G is not 2-connected Then Return False;
For each S in V(G)? do
If (w(G—S)=3) and (the connected components
H{,H,,H; are complete) Then Return True;
Return False;
End;

Checking G is not 2-connected can be done by 0(n?) time. Next, there are
C? iterations, each iteration requires O(n?) time. Thus the overall time
required by algorithm Is_Graph_F; is 0(n%).

3.2. Algorithm recognizing the class F,
For each graph G in class F,, if we remove S = {x, y;, v, y3}, then we get
three connected components H,, H,, H3 which are complete.

Input: graph G with o, = 2n.
Output: Is_Graph_F, return True if G € F,, else return False.
Algorithm:

Function Boolean Is_Graph F,;
Begin
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For each S in V(G)* do
If (w(G—S)=3) and (the connected components
H{,H,,H; are complete) Then
If there exists x€S and S—{x}={y1,y2¥3} such
that:
(|Ng, )|, |Nit, GO, [Ny (00| = 1) and
({12, y2¥3,y301} € E(G)) and
(Hy +{y1},Hz + {y2}, H3 + {y3} are complete)
Then Return True;
Return False;
End;

There are C; iterations, each iteration requires 0(n?) time, so the overall
time required by algorithm Is_Graph_F, is 0(n®).
3.3. Algorithm recognizing the class F;

For each graph G in class F5, if we remove S = {y1, 2, V3, Z1, Z2, 23}, then
we get three connected components H;, H,, H; which are complete.

Input: graph G with g, > 2n.
Output: Is_Graph_F5 return True if G € F3, else return False.

Algorithm:

Function Boolean Is_Graph F;
Begin
For each S in V(G)® do
If (w(G—S)=3) and (the connected components
H{,H,,H; are complete graphs) Then
If there exists Y,Y,,¥3€S and S—{y,y,y3}=
{z1,25,23} such that:
(1Y2, Y2Y3, ¥3Y1, 2122, 2223, 2321} € E(G)) and
(Hy +{y1,21}, Hy + {y2,2,}, H3 + {y3,23} are complete)
Then Return True;
Return False;
End;

There are C? iterations, each iteration requires 0(n?) time, so the overall
time required by algorithm Is_Graph_F; is 0(n®).
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4. PRELIMINARIES

For what follows we assume that C is a longest cycle of G. On C (C with a
given orientation), we denote the predecessor and successor (along F) by
x,xT,and xT = (x")*,x7~ = (x7)". In general, for a positive integer i,
xt = (x*ED)* and x~f = (x~V)~. Moreover, for a vertex set A C
V(C), we wirte AT ={x*:x € A} and A~ = {x":x € A}. The path joining
two vertices x and y of C, along C, is denoted by x?y, and the same path
in reverse order are given by yC x.

In this paper, we consider the paths and cycles as vertex sets. If x, y are the
end vertices of a path P, sometimes we write xPy instead of P.

Assume that H is a connected component of G — C and N.(H) is the set of
neighbors in C of all vertices in H. A edge sequence is a path joining two
vertices on C and its inner vertices belong to G — C — H. In particular, an
edge joining 2 non-consecutive vertices on C is also a edge sequence.

Lemma 4.1. Let G be a 2-connected graph. If G is nonhamiltonian and H is
a connected component of G — C then

(@ Nc(H) N Nc(H)* = Nc(H) N Ne(H)™ = .

(b) There is no edge sequence joining 2 vertices of No(H)*. Similarly, there
is no edge sequence joining 2 vertices of N-(H) ™.

(€) If v;, v € N(H) for i # j then there is no vertex z € v;"C v; such that
{vi'z*,v 2z} € E(G). Similarly, there is no vertex z € vf?vi such that
{v'z*,v 2z} € E(G).

(d) For any x € H and for any v; € No(H), d(x) + d(v;') <n—1.

Proof. (a), (b), (c) are presented in [2], so we will prove (d). Forany x € H,
d(x) = [Ny ()| + [Nc(x)| < [H| = 1+ [Nc(H)]. By () and (b), d(v;") <
(1G] = [HD) = INc(H)*| = |G| = [H| = INc(H)I, s0 d(x) + d(v") < |H| -
1+ |Nc(H)| + 1G] = [H| = INc(H)| = |G| -1 =n—1.

Lemma 4.2 [2]. Assume that u,v are nonadjacent vertices and d(u) +
d(v) = n. Then G is hamiltonian if and only if G + uv is hamiltonian.

We conclude the following Lemma from Lemma 4.2.

Lemma 4.3. Assume that G* 2 G such that V(G*) = V(G) and d;(u) +
d¢(v) = n for any edge uv € E(G*) — E(G). Then G is hamiltonian if and
only if G*is hamiltonian.
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5. PROOFS OF THEOREM 2.1

For what follows, we assume that G is nonhamiltonian. Because G is 2-
connected, so G is cycleable. Let H;,H,,..,H, be the connected
components of G — C. Clearly, |[N;(H;)| = 2 forany i = 1..m.

Proposition 5.1. H{, H,, ..., H,,, are complete graphs.

Proof. We consider a connected component H, (t = 1..m). Because G is 2-
connected, so [N¢(H.)| =2 and there are at least two vertices v;,v; €
Nc(H,). If H, is not complete then there are two distinct vertices x,y € H,
such that xy & E(G). By Lemma 4.1 (a, b), {x,y,v;", 17"} is an independent
vertex set, therefore by g, = 2n, d(x) +d(y) +d@;") + d(vj+) > 2n.
However, by Lemma 4.1 (d), d(x) + d(v;") <n—1and d(y) + d(v/") <
n—1, it implies that d(x)+d(y)+d")+dy)<2n-2, a
contradiction. Thus, H, is complete, and we have Hy, H,,...,H, are
complete graphs.

Proposition 5.2. |[N;(H,)| < Ig_l foreveryt = 1..m.

Proof. By Lemma 4.1 (a), N.(H,)NN:(H)t =@, therefore |C|=>
ING(Hy) U N(H,)*| = 2INg (D), it implies that N (H)| < <.
Proposition 5.3. m = 1.

Proof. We consider the case of m as follow:
aym = 4.

Let x; € H; for each i = 1..4. Clearly, the vertex set {x;,x;,x3,x,} is
independent, by g, > 2n we have d(x;) + d(x;) + d(x3) + d(xs) = 2n.
Moreover, by Proposition 5.2 and m > 4, d(x;) < |H;| — 1+ |N:(H;)| <
|H;| -1+ '(2:—' s0 d(x1) +d(xz) +d(x3) + d(xy) < [Hi| + [Hz| + |Hs| +
|Hy| + 2|C| — 4 < n+ |C| — 4, therefore n + |C| — 4 = 2n, it implies that
|C| = n + 4, a contradiction.

Thus, the case m > 4 does not happen.

b) m = 3.

Let x € H;,y € H,,z € H3 and we consider each vertex v; € No(H,).
Claim5.1. v" € N(y) U N(=2).

Proof. Assume to the contrary that v;*  N(y) U N(z), then the vertex
set {x,v,z v} is independent, by o, = 2n we have d(x)+d(y) +
d(z)+d(v})=2n. By Lemma 41 (d), d(x)+dw)<n-1.
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Moreover, by Proposition 5.2 we have d(y) <|H,|—1+ and

2
d(z) < Hy] - 1+ZL Therefore, d(x) + d(y) +d(2) + d(v}") <n —

3 + |H,| + |H;| + |C| < 2n — 3, a contradiction.
Claim 5.2. [Nc(Hy)| = |N¢(H)| = [Nc(H3)| = 2.

Proof. If [N-(H;)| = 3 then by Claim 5.1, there are at least two vertices
v, v; € Ne(H;) such that v, v" € N(y) or v, v" € N(2), therefore
there exists an edge sequence joining v;, 1;j+, which contradicts to
Lemma 4.1 (b). Thus, |N;(H;)| = 2. Similarly, we have |N;(H,)| =
INc(H3)| = 2.

Claim5.3.5 < |C| < 6.

Proof. If there exists v € C such that v € N-(H;) U N-(H;) U Nc(H3),
then the vertex set {x,y,z v} is independent, by g, = 2n we have
dx)+d(y)+d(z) +d(v) = 2n. However, d(x) < |H| -1+
INc(HD| = |Hi |+ 1, d(y) < [H2| + 1, d(2) < [H3| + 1, d(v) < [C| -
1, so dx)+d(y)+d(z)+dw) < |H{|+ |Hy| + |H3| +|C|+2 =
n + 2. It implies that n + 2 > 2n and n < 2, a contradiction. Therefore,
Moreover, by Lemma 4.1 (a), |C| = 4. If |C| = 4 then by Lemma 4.1 (a)
and Claim 5.1, there exists an edge sequence joining two vertices in
N;(H;)™, which contradicts Lemma 4.1 (b). Thus, we have 5 < |C]| < 6.

If [C| =5, 50 C = (vq,v,, V3,14, v5). Without loss of generality, by Lemma
4.1 (a, b) and Claim 5.1, we assume that v{,v3 € N;(H;), v, € Nc(Hy),
Uy € Nc(Hg) Then, 14 € Nc(Hz) and Nc(H2)+ = {Ul,v3}. It Imp|les that
there exists an edge sequence joining two vertices in Ng(H,)*, which
contradicts Lemma 4.1 (b). Therefore, by Claim 5.3, |C| =6, so C =
(171,172,173,174,175,176) and by Claim 52, NC(HI) nNc(Hz) = Nc(Hz) N
N-(H3) = Nc(Hy) N Nc(H3) = @. Without loss of generality, by Lemma
4.1 (a, b) and Claim 5.1, there are two possible case as follow:

(1) Case Vq,V3 € Nc(Hl), vy € Nc(Hz), vy € Nc(Hg) Observe that
V¢ € Nc(H3) and vs € No(H,). Let Wi, W, W5 be the paths in
Hy,H,,H; joining the pair of vertices (vq,v3),(v,,Vs), (Vs,Vg)
respectively. Then, we have C' = (v; W, v3v,W,vs v, W3vgv,) is longer
than C, which contradicts the fact that C is a longest cycle of G.

(2) Case U1, Uy € NC(HI)’ 1% € Nc(Hz), Vs € Nc(H3) Observe that
Vg € Nc(Hy) and vz € No(H3). Let Wi, W, W5 be the paths in
Hy,H,,H; joining the pair of vertices (vq,v,), (v, ve), (V3,Vs)
respectiVGIy. The, we have C’ = (U1W1U4, U3W3U5,U6W2U2,171) is
longer than C, a contradiction.

Thus, the case m = 3 does not happen.
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c)m=2.
Without loss of generality, assume that |Hi|+ |[N:(Hy)| = |H,| +
|Nc(H2) I

Proof. By |Nc(H;)| = 2, assume to contrary that |N.(H;)| = 3. Let
X € H;,y € H,. By Lemma 4.1 (b) there exists two vertices v;",v;" €
N¢(H )" — Nc(H,). By Lemma 4.1 (a, b), the vertex set {x, y, v}, v} is
independent, so d(x) +d(y) +d(;") + d(vfr) > 2n. By Lemma 4.1
(d), d(x) +d(v;") < n—1. Moreover, d(y) < |H,| — 1+ |No(Hp)| <
|Hi| = 1+ |Nc(H)I, d(v") < n—|H;| = |Nc(Hy)|. Therefore d(x) +
d(y) +d(v;") + d(v") < 2n — 2, a contradiction. Thus, [Nc(Hy)| = 2.

Proof. Assume to contrary that |N-(H;)| = 3. Arguing similarly the
proof of Claim 5.4, there exists two vertices v/, v;" € No(Hp)" —
Nc(H;). Let x € H;,y € H,. By Lemma 4.1 (a, b), the vertex set
{x,y,vi",v*} is independent, so d(x) + d(y) + d(v;") +d(v") = 2n.
By Lemma 4.1 (b) and by v' ¢ N(H;)UN(H,), d(v;") <|C|—
INc(Hz)|. Moreover, d(x) < |Hy| =1+ |Nc(H)| = |Hi|+1, d(y) <
|Hy| = 1+ [Nc(H)I, d) <[Cl = INc(H)| < [Cl-2<n—4
Therefore, d(x) +d(y) +d(v") +d(v") < [Hi| + [Hy| + [C] + n —
4 = 2n — 4, a contradiction. Thus, |N.(H,)| = 2.
By arguing similarly above, observe that |N.(H;)* N N/(H))|=1=
IN-(H)* n N (Hy)|. Without loss of generality, we assume that N-(H,) =
{v, v}, Ne(Hy) = {vy, v} with v # v} and v # v;. Because G is 2-
connected and C is a longest cycle of G, so |H,| =1, i.e H, = {y}. Let
x € H, and W; be the path in H; joining v;" to v;.

Figure 4. lllustrating the proofs of part c), Proposition 5.3.
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If ;v € E(G) then C" = (viyvfzvfwlq?v;’317j+?vi) is longer than C,
a contradiction. Therefore, v>v* & E(G) and the vertex set {x,y, v;"%, v}
is independent, so d(x) +d(y) + d(v;*) + d(v") = 2n. However, by
Lemma 4.1 (d), d@)+d@}*)<n—-1 and (x)+d@¥") <n-1, it
implies that d(x) + d(y) + d(v;*®) + d(vfr) < 2n — 2, a contradiction.

Thus, the case m = 2 does not happen.

By these case a), b), ¢) do not happen, we finish the proof that m = 1. Then
G — C has only one connected component. For what follows, let H be the
connected component of G — C. The fact that H = G — C. By Proposition
5.1, H is complete.

Proposition 5.4. |[N;(H)| = 2.

Proof. Clearly, |[N-(H)| = 2 by G is 2-connected. Assume that |N.(H)| =
3. For any two vertices v;,v; € Nc(H), let v, € Ne(H) —{v;, v} and x €
H, then by Lemma 4.1 (b) the vertex set {x, v, v;*, v} is independent. So
d(x) +d(w) +d(v") + d(v{) = 2n. However, by Lemma 4.1 (d),
(x) +d(vy) <n—1,itimplies that d(v;") + d(v") 2 n + 1.

By G is 2-connected and H is complete, there exists two vertices v; , v, €
N¢(H) and a hamiltonian path W in H joining v;, to v;,. Then C =
(viow%?v;;%?vio) is a hamiltonian cycle of graph G' = G + vt e
G' is hamiltonian. By Lemma 4.2, G is hamiltonian if and only if G  is

hamiltonian, therefore G is hamiltonian, which contradicts to the assumption
that G is nonhamiltonian. Thus, |N;(H)| = 2.

For what follows, let v;,v; be two vertices of N;(H) and let W be the
hamiltonian path of H joining v;, v;.

Proposition 5.5. N(v") U N(v") = € — {v{", vj*}.

Proof. Assume to the contrary that there exists v, € C —{v;", 1"} such that
v, € N(v) UN(vh). Clearly, v, ¢ {v;,v;}. Let x € H, then by Lemma
4.1 (b), the vertex set {x,v;", ¥, v} is independent, so d(x) +d(v;") +
d(v") +d(v,) =2 2n. However, d(x) <|H|+1,d(v) <|C|-3, it
implies that d(v;") + d(v") 2 2n — |H| — |C| + 2 = n + 2. Therefore, by
Lemma 4.2, G is hamiltonian if and only if ' = G + v;"v;* is hamiltonian.
Observe that ¢’ = (viniji*vj*?vi) is a hamiltonian cycle of G, i.e G’
is hamiltonian, it implies that G is hamiltonian, a contradiction.
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Now we consider two case of toughness of G.

I. G is not 1-tough

By G is not 1-tough, there exists a vertex set S # @ such that G — S has at
least |S| + 1 connected components. By G is 2-connected, |S| = 2. Since
n—|S|=2w(G—-S)=|S|+1s02|S|<n-—1.

Claim5.6.SNH = @.

Proof. Observe that G — H = C is 1-tough, if H —S = @ then w(G —
S) = w(C —S) < |S|, which contradicts to the fact that w(G —S) =
|S| + 1. Therefore, H—S #@. Let SN H =S4,SNC =S.. If [Sy| =1
then w(G—S5)<1+w(C—-S;)<1+]S:|<|S|, a -contradiction.
Thus, [Sy| =0,i.eSNH = 0.

Observe that v;,v; €S, otherwise w(G—-S)<w(C—-S5)=<IS|, a
contradiction. Therefore, H is a connected component of G —S. Let
H,T;,T,, ..., T, (k= |S]|) be the connected components of G — S.

Claimb5.7. k= |S| =2

Proof. Assume that k > 3. Let x € H,y; € Ty, y, € T,,y3 € T3, then the
vertex set {x,y1,y2,¥3} is independent, so d(x) + d(y;) + d(y,) +
d(y3) = 2n. Observe that d(x) < |H|+1 and d(y;) < |T;| =1+ |S]|
for any i = 1,2,3. Therefore, d(x) + d(y;) + d(y,) + d(y3) < |H| +
ITy| + |T,| + |T5| +3|S|—2<2|S| -2+ (n—k+3)=2|S|+n—

k + 1. It implies that 2|S|+n—k+1>2n, ie 2|S|>2n+k—-12>
n+2 (by k = 3), which contradicts to the fact that 2|S| <n-—1.
Therefore k < 2. By k = |S| = 2, we have k = |S| = 2.

By Claim 5.7 and by v;,v; € S we have S = {v;, v} and G — S has three
connected components, such as H, Ty, T,. By Proposition 5.5, T; = ({v;"} U

N —{v, vj} and T, = ({v;’} U N(vf’) —{v, vj}.
Claim 5.8. T;, T, is complete.

Proof. Assume that T; is not complete. Then there exists pair of
nonadjacent vertices y,z € T;. Let x € H, then the vertex set {x,y, z,v;"}
is independent, so d(x)+d(y) +d(z) +d(v") = 2n. However,
d(x) < |H|+1,dw") < |Tol + 1, d(y) < Ty, d(2) < |Ty|. Therefore
dx) +d(y) +d(2) +d") < |H|+2|Ty| + |To| +2 =n+|Ty]|. It
implies that n + |T;| = 2n, i.e |T{| = n, a contradiction. Thus, T; is
complete. Similarly, we have T, is complete.
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H
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T, O/u;f ,,_+\ T,

i)

Figure 5. Graph G belongs to class F,.

Clearly, 3 < a(G) < 5. If a(G) = 4, there exists a independent set of four
vertices, whose elements are x e H, y€T;, z€ T, and a vertex in S
(without loss of generality, assume that the vertex in S is v;). By a4 = 2n,
we have d(x)+d(y) +d(z) +d(v;) = 2n. However, d(x) < |H| + 1,
dw;)) <n—4, d(y) <|Ty|, d(z) < |T,|. It implies that d(x) + d(y) +
d(z) +d(v;) < |H| + |Ty| + |T,| + n — 3 = 2n — 5, a contradiction. Thus,
a(G) = 3.

Conclude that in this Case G is not 1-tough, G belongs to class F;.

Il. G is 1-tough

Let P, = N(v;") U {v{"}, P, = N(yj") U {v;*}. By Lemma 4.1 (c) and Proposition
55, we have PP, are two paths on C satisfying {v, v, v} c Py,
{vj,v,v"*} € P,, L UP, = Candif v € Py N P, then v is an end vertex of both
P, P,.

Let Ay = P, —{v;}, A, = P, —{v;}. Clearly, |A; N 4;| <2. We consider three
case of [A; N 4,|.

Casel. A;NA, =0.

H
A r
Ay ./v:' v}'\. Az

Figure 6. lllustrating the Case 1.
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Observe that there exists an edge joining a vertex v, € A; to a vertex
v, € A,, otherwise w(G — {v;,;}) = 3, which contradicts to the fact that G
Is 1-tough.

If there exists pair of nonadjacent vertices v; ,v;, € Ay, let x € H, then the
vertex set {x,v;,v;,, v} is independent, so d(x) +d(v;,) +d(v;,) +
d(v") = 2n. By Lemma 4.1 (d), d(x) + d(v;") < n— 1, we have d(v;)) +
d(v,) =2n+ 1. By Lemma 4.2, G is hamiltonian if and only if G =G+

v;, v;, is hamiltonian.

Arguing similarly, for any pair of nonadjacent vertices v;,,v;, € A;, we
have d(v;,) + d(v,) = n+ 1 and G is hamiltonian if and only if " = G +

v, Y, IS hamiltonian.

Let G* be the graph obtain from G by adding new edges joining all pair of
nonadjacent vertices in the same set Ay, respectively in A,. By Lemma 4.3,
G is hamiltonian if and only if G* is hamiltonian. We consider graph G*,
let W, be the hamiltonian path of 4; joining v;" to v, and let W, be the
hamiltonian path of A, joining v, to vj+. Then, we have
C' = (vyv Wiy v Wovty; W) is a hamiltonian cycle in G, ie G is
hamiltonian. Therefore, G is hamiltonian, a contradiction.

Thus, the Case 1 does not happen.
Case2. |4, NA,| =1.

Let A; n A, = {v, }. Without loss of generality, assume that v, € v;rszj_
Wi # ).

Figure 7. lllustrating the Case 2.

Case 2.1. v, = v;*%

If |H|>1 then C = (viWqukq+Fvi) is longer than C. Therefore,
|H| =1, let H = {x}. If v; € N(v}") then C' = (vixvj(C_'vkng’?vi_v;’vi) is
a hamiltonian cycle in G a contradiction. Therefore, v;” € N(v;"), and by
Proposition 5.5, v; € N(v;") and d(v;") = 2.
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We consider subgraph B, = 4, — {v;} = v,.C vi — {v, v, }. If there exists
pair of nonadjacent vertices v,,, v, € B, then the vertex set {x, v, Ve, vtz}
is independent, so d(x)+d(v;") +d(v,,) +d(v,,) = 2n. However,
dx) =dw) =2 and d(v,),d(v,) <|C|-3=n—4, therefore
d(x) +dw) +d(ve,) + d(v,) < 2n — 4, a contradiction. Thus, B, is
complete.

If v~ # v, then v,y €B,, so v; v € E(G), which contradicts to
Lemma 4.1 (b). Therefore v~ = v,

Because G is 1-tough, nonhamiltonian, so n > 7 and v; # vj+. If there
exists a vertex v, € vj“?vi‘ is adjacent to v; then we have C' =
(vixy; UtFVi_Vt_(C_%Jrvkvfrvi) is a hamiltonian cycle in G, a contradiction.

Therefore, v; is not adjacent to all vertices in v]-+ZC v .

Similarly, if there exists a vertex v, € 171~+2F‘Ui_ is adjacent to v, then we
have C' = (ixv Cv v, C v v v;) is a hamiltonian cycle in G, a
contradiction. Therefore, v} is not adjacent to all vertices in vj+ZC v; .

Conclude that the graph G is shown in Figure 8, v; can possibly be adjacent
to another vertices:

vj

Figure 8. Graph G belongs to class F,.
Clearly, a(G) = 3 and G belongs to class F,.

Case2.2. v, # v> and v, = v

Clearly, vy # v;". If v; vy € E(G), then €' = (vinjvkij’Fvi_v,:(C_'vi) is
a hamiltonian cycle of G, a contradiction. Therefore, v; v, € E(G). By
v, = v, and by Lemma 4.1 (b), v; v € E(G), s0 v, # v;" by v, € N(v").
We have the following Claims.

Claim5.9.v; € 4, — A;.

Proof. Assume that v; € A;. Let x € H, then the vertex set
{x,v", v, v} is independent, so d(x) + d(v") +d(v;) +d(v;) =
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2n. By Lemma 4.1 (d), d(x) + d(vf’) <n-1and d(v;)+d(v;) =
n + 1. Therefore, by Lemma 4.2, G is hamiltonian if and only if ¢’ =
G + v v is hamiltonian. Observe that ¢’ = (v;Wv v, v C v v C v;)
is a hamiltonian cycle of G’, so G and G are hamiltonian, a contradiction.
Thus, v; € A;,and by P; U P, = C we have v; € 4, — A;.

Figure 9. lllustrating the Claim 5.9.

Let B, = A, —{v,} = v} Cvy, B, =4, —{v,}= vff)vl-_. By v # v
and by v; # v;" we have |By|,|B,| = 2. Arguing similarly, for any pair of
nonadjacent vertices (y, z) in the same set B, respectively in B,, we have
diy)+d(z) =2n+ 1.

Claim 5.10. There are no edges joining a vertex in B; to a vertex in B,.

Proof. Assume to the contrary that there exists an edge joining v,, € B;
to v, € B,. Clearly, v, # v/, v,, # v;". Let G* be the graph obtain
from G by adding new edges joining all pair of nonadjacent vertices in
the same set By, respectively in B,. By Lemma 4.3, G is hamiltonian if
and only if G* is hamiltonian.

We consider graph G*, observe that By, B, are complete. Let W, be the
hamiltonian path in B; joining v, to v;" and let W, be the path in B,
joining v to wv,. Then, C = (W v v Wov, v, Wivv) is a
hamiltonian cycle of G*, i.e G* is hamiltonian, it implies that G is

hamiltonian, a contradiction.
Claim 5.11. B4, B, are complete.

Proof. Assume that there exists a pair of nonadjacent vertices v;,,v;, €

B;. Let x € H, then the vertex set {x,v;,v;,,v"} is independent, so
d(x) +d(v;) +d(v;,) +d(v") =2 2n.  However, d(x) < [H|+1,
d(wv") < |By|+2 and d(v;,),d(vy,) < |Bi|+1, therefore d(x) +
d(v;,) +d(v;,) +d(v") < |H| +2|By| + [By| +5=n+ B +2. It
implies that |B;| =n—2, a contradiction. Thus, B; is complete.
Similarly, we have B, is complete.

Claim 5.12. v, v; are not adjacent to any vertex in B, — {v*}.
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Proof. Assume that v, is adjacent to a vertex v, € B, — {v;*}. By Claim

5.11, let W, be the hamiltonian path of B; joining v}, to v;", and let W,

be the hamiltonian path of B, joining vj+ to wv,. Then,
C' = WWvv Wov, v vy WiviTv;) is a hamiltonian cycle of G, a
contradiction. Similarly, if v; is adjacent to a vertex v, € B, — {vfr}, let

]
W; be the hamiltonian path of B, joining v, to v*, then C =

q ]!
(W Wy v, W v vy Wiviv) is a hamiltonian cycle of G, a

contradiction. Thus, v, v; are not adjacent to any vertex in B, — {vfr}.
Claim 5.13. v; is not adjacent to any vertex in B.

Proof. Assume to the contrary that v; is adjacent to a vertex v, € B;. Let
W, be the hamiltonian path of B, joining vj+ to v; . It happens as one of
two following case:

(1) Case v, # v;": Let W; be the hamiltonian path of B; joining v, to v;",
we have C' = (v;,Wv;v, W, v} vv" Wov] ;) is a hamiltonian cycle
of G, a contradiction.

(2) Case v, = v;": Let W, be the hamiltonian path of B, joining v, o vy,
we have €' = (viwwpwlv,;vm+w2v;vi) is a hamiltonian cycle
of G, a contradiction.

Claim 5.14. v; is adjacent to all vertices in H.

Proof. Assume to the contrary that v; is not adjacent to a vertex x € H.
Let v,, € By, v, € B, —{vf}, then by Claims 5.10, 5.12, 5.13, the
vertex set {x,v;,v,,,v,,} is independent, so d(x) +d(v;) + d(v,,) +
d(ve,) = 2n. However, d(x) < [H|, d(v;) < |H| + 2, d(v,) < |B;| +
1, d(v,) < |B;|. Therefore, 2n < d(x) +d(v;) +d(v,,) +d(v,,) <
2|H| + |By| +|Bz| +3=n+|H|, it implies that |H|>n, a
contradiction.

Claim 5.15. v, is adjacent to all vertices in B;.

Proof. Assume to the contrary that v is not a vertex v,, € By. Letx € H
and v,, € B, — {vj"}. Then by Claim 5.10 and by Claim 5.12, the vertex
set  {x,vy,v;,,v,} is independent, so d(x)+d(v) +d(v,,) +
d(ve,) = 2n. However, d(x) < |H|+1, d(vy) < [By|+2, d(v,) <
|B1l, d(v,) < |By|. Therefore, d(x)+d(vy)+d(v,) +d(v,) <
|H| + 2|By| + |B;| +3 =n+|By|, it implies that |B;|=n, a
contradiction.

Let H; = H + {v;}, by Claim 5.14, H, is complete. By Claim 5.15, 4; =
B; + {v,} is complete. The graph G is shown in Figure 10, in which,
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Hy, A4, B, are complete and |Hq|,|A441,|B2| = 2. Moreover, the vertex v; can
possibly be adjacent to another vertices.

H,

vy

Figure 10. Graph G belongs to class F,.
Clearly, 3 < a(G) < 4. If a(G) = 4, then there exists x € H;,y € A;,z €
B, such that the vertex set {x,y,z, v;} is independent, so d(x) + d(y) +
d(z) + d(v;) = 2n. However, d(x) + d(y) + d(z) < |H{| + |A1]| + |4;] —
1 = n — 2, therefore d(v;) = n + 2, a contradiction. Thus a(G) = 3.

Conclude that in this Case 2.2, G belongs to class F,.

Case 2.3. v # v;* and vy, # v/

Arguing similarly the proofs of Case 2.2, let By = A; — {v,}and B, = 4, —
{v, }, then for any pair of nonadjacent vertices (y, z) together in B; or B,,
we have d(y) +d(z) = n+ 1. Observe that v;" # v; € B; and v, v #
v € B,.

Let G* be the graph obtain from G by adding new edges joining all pair of
nonadjacent vertices in the same set B, respectively in B,. By Lemma 4.3,
G is hamiltonian if and only if G* is hamiltonian. We consider graph G*, let
W; be the hamiltonian path of By joining v;, to v}, and let W, be the
hamiltonian path of B, joining vj+ to v;. Then, we have
C' = (v;WvvWovivvy Wyvv,) is a hamiltonian cycle of G*, i.e G* is
hamiltonian. Therefore, G is hamiltonian, a contradiction.

Thus, the Case 2.3 does not happen.
Case 3. |4; NA,| = 2.

Let A, N A, = {v;, v, }. Without loss of generality, we assume that v, €
v;LZ?vj_ (v #v)and v, € vj+2Fvi_ ("% # v;). Let By = Ay — {vy, v},
B, = A, — {v,, v, }. Arguing similarly the proofs of Case 2.2, for any pair of
nonadjacent vertices (y, z) in the same set By, respectively in B,, we get
dly)+d(z) =2n+ 1.
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Figure 11. lllustrating the Case 3.

Case 3.1. v = vj% or v, = vj*%.

Without loss of generality, assume that v, = v;". If v; € N(v}') then we
have C = (ViW?fj(C_vklﬁJr?vafrvi) is a hamiltonian cycle of G, a
contradiction. Therefore v;” & N(v;"), i.e v; & A; and v, € A,. It implies
that there is no vertex v, € vﬁzf’vi‘ such that v, €A NA,, a
contradiction.

Thus, the Case 3.1 does not happen.

Case 3.2. (v, # v and v, = v7) or (v, # v and v, = ;).

Without loss of generality, assume that v, # v;"? and v, = v . We have the
following Claims:
Claim 5.16. v, = v; .
Proof. Assume to the contrary that v, # v; . Arguing similarly the proofs
of Case 2.2, we have v; v, € E(G) and d(v;) +d(vy) =n+ 1. By
Lemma 4.2, G is hamiltonian if and only if ¢ =G +v;v; is
hamiltonian.  Observe that €' = (v,Wyvv Cvv;Cv) is a
hamiltonian cycle of G, i.e G’ is hamiltoniania. It implies that G is
hamiltonian, a contradiction.
Claim 5.17. |By|,|B;| = 2. Moreover, v; > € B, — {v*}.

Proof. Because of v}, v; € By, so |B;| = 2. If v7? = vj+, then C' =
(vl-ijvj“kaFv;fvi‘vi) is a hamiltonian cycle of G, a contradiction.
Therefore, v; % # v". By Claim 5.16 we have v, € B, — {1} and

|B;| = 2.
Claim 5.18. There are no edges joining a vertex in B; to a vertex in B,.

Proof. Assume to the contrary that there exists v,, € By, v¢, € B, such
that v,, v,, € E(G). Observe that v,, # v;" and v,, # v;". Let G* be the
graph obtain from G by adding new edges joining all pair of nonadjacent
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vertices in the same set By, respectively in B, (note that their degree sum
is greater than n + 1). By Lemma 4.3, G is hamiltonian if and only if G*
Is hamiltonian. We consider the graph G*, let W; be the hamiltonian path
of B joining v;" to v,,, and let W, be the hamiltonian path of B, joining
v, 1o . Then €' = (v, Wy v v Wyv,, v, Wov o] ;) is @ hamiltonian
cycle of G*, i.e G is hamiltonian. It implies that G is hamiltonian, a
contradiction.

Claim 5.19. B4, B, are complete.

Proof. Assume that there exists a pair of nonadjacent vertices v,, v, €
B;. Let x € H, then the vertex set {x,v,,v,,v"} is independent, so
d(x) +d(vy) +d(v) +d(y") 2 2n.  However, d(x) < |H|+1,
d() < |Bl+2 and d(v,),d(v,) < |B;| + 2. Therefore, d(x) +
d(vy) +d(vy) +d(v") < |[H| +2|B1| + |B| + 7 =n+|B| +3. It
implies that |B;| =n—3, a contradiction. Thus, B; is complete.
Similarly, B, is complete.

Claim 5.20. v; is not adjacent to all vertices in B; — {v;"}.

Proof. Assume to the contrary that v; is adjacent to v,, € B; — {v;'}. By
Claim 5.19, let W; be the hamiltonian path of B; joining v;" to vy, We
have €' = (v;Wy, kaFUi_U?Wthvi) is a hamiltonian cycle of G, a
contradiction.

Claim 5.21. v; is not adjacent to all vertices in B,.

Proof. Assume to the contrary that v; is adjacent to v,, € B,. Observe
that v, # v, otherwise c = (viWq?vaffq+vi) is a hamiltonian
cycle of G, a contradiction. Let W, be the hamiltonian path of B, joining
vt 10 v, Then, ¢’ = ;W v, C v v v Wyv,,v;) s a hamiltonian
cycle of G, a contradiction.

Figure 12. lllustrating the proof of Claim 5.21.
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Similarly the proofs of Claim 5.20 and Claim 5.21, we have:
Claim 5.22. v; is not adjacent to all vertices in By U (B, — {v/*}).

Claim 5.23. v;, v; are adjacent to all vertices in H.

Proof. Assume that v; is not adjacent to x € H. Let v, € B; — {v;},
v, € B, —{y'}. Then by Claims 5.18, 5.20, 521, the vertex set
{x,v;,v,,v,} is independent, so d(x) +d(v,) +d(v,) + d(v,) = 2n.
However, d(x) <|H|, d(v;) <|H|+3, d(v,) < |Bi|+1, d(vy) <
|B| + 1, therefore  d(x) +d(v;) +d(v,) +d(vy) < 2|H| + |By| +
|B,| +5=n+ |H|+ 1. It implies that |H| > n — 1, a contradiction.
Thus, v; is adjacent to all vertices in H. Similarly, v; is adjacent to all
vertices in H.

Claim 5.24. v, is not adjacent to all vertices in {v;} U (B, — {v;'}).

Proof. Assume that v is adjacent to v,, € B, — {r;*}. Let W, be the

hamiltonian path of B, joining v; to v, and let W, be the hamiltonian
path - of B, joining vj+ to wv,. Then, we have
C' = Wy Wy, vy Wivf vy ) is a hamiltonian cycle of G, a
contradiction. Therefore, v, is not adjacent to all vertices in B, — {vf}.
Moreover, if v, is adjacent to v;, by Claim 5.17, let W, be the
hamiltonian path of B, joining vj+ to w72  Then,
C' = (vWyv Wov; v v Wivgvev;) is a hamiltonian cycle of G, a

contradiction. Thus, v, is not adjacent to v;.
Claim 5.25. v, is adjacent to all vertices in B;.

Proof. Assume to the contrary that v is not adjacent to v,, € B;. Let
x € H,v,, € B, — {1/}, then by Claim 5.18 and by Claim 5.24, the
vertex set {x, vy, v,,,v;,} is independent, so d(x) + d(vy) + d(v;,) +
d(ve,) = 2n. However, d(x) < |[H|+1, d(v) < |B1| +2, d(v,) <
|B1l, d(v,) < |By|. Therefore, d(x)+d(v)+d(v,,) +dw,) <
2|B;| +|By| + |H| + 3 =n+ |By| — 1. It implies that |[B;|=>n+1, a
contradiction.

Arguing similarly the proofs of Claim 5.24 and Claim 5.25, we have:
Claim 5.26. v;” is not adjacent to all vertices in {v;} U (B; — {v;'}).
Claim 5.27. v; is adjacent to all vertices in B,.

Observe that v, v; € Nc(H) ™, by Lemma 4.1 (b) we have:
Claim 5.28. v, v; € E(G).
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Claim 5.29. v;v; € E(G).

Proof. Assume to the contrary that v,v; € E(G). Let v, € B; — {v;'},
v, € B, —{v"}. Then by Claims 5.18, 5.20. 5.21 and 5.22, the vertex
set {v,v,v,,,v,} is independent, so d(v) +d() +d(v,,) +
d(ve,) = 2n. However, d(v;) < |H|+2, d(vj)) < |H|+2, d(v,) <
|B1l, d(v,) < |B,|. Therefore, d(v;) +d(v;)+d(v,)+dv,) <
2|H| + |By| + |By| +4=n+|H|. It implies that |H|>n, a
contradiction.

By Claim 5.25, C; = B; + {v,} is complete. By Claim 5.27, C, = B, +

{v;} is complete. Moreover, by Claim 5.17, |Cy|,|C,| = 3. By Claim 5.23

and Claim 5.29, H; = H + {v;,v;} is complete and |H,| > 3. Conclude that

G is shown in Figure 13, in which Hy,C;,C, are complete and
|C1|!|C2|; |H1| = 3.

) ™~
¢, o | .t C;
v~ ]

Figure 13. Graph G belongs to class F;.

Clearly, a(G) = 3 and G belongs to class F;.

Case3.3.v # v, v, # v and v, # v, v, # vy

Observe that v{",v; € By — {v;'} and v;, vy € B, — {v;'}. Let G* be the
graph obtain from G by adding new edges joining all pair of nonadjacent
vertices in the same set By, respectively in B, (note that their degree sum is
greater than n + 1). By Lemma 4.3, G is hamiltonian if and only if G* is
hamiltonian.

We consider the graph G*. Let W; be the hamiltonian path of B; joining v,
to v;", and let W, be the hamiltonian path of B, — ;" joining v; to vy
Then, we have ¢’ = (v;Wv; v v, v, Wovivvy Wivfv,) is a hamiltonian
cycle of G*, i.e G* is hamiltonian, therefore G is hamiltonian, a
contradiction.

Thus, the Case 3.3 does not happen.
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