
International Journal of Computer Science and Business Informatics 

 

 

 

IJCSBI.ORG 

  ISSN: 1694-2108 | Vol. 15, No. 3. MAY 2015 26 

 

 

Efficient Computational Tools for 

Nonlinear Flight Dynamic Analysis 

in the Full Envelope  
 

P. Lathasree  
CSIR-National Aerospace Laboratories 

Old Airport Road, PB No. 1779, Bangalore - 560017 

Address2 of institution (optional) 

 

Abhay A. Pashilkar  
CSIR-National Aerospace Laboratories 

Old Airport Road, PB No. 1779, Bangalore - 560017 

Address2 of institution (optional) 

 

 
 

ABSTRACT 
Equilibrium analysis for an aircraft is very important for control law design and 

development. Computation of equilibrium point is also required to initialize the aircraft 

model in flight simulation. This equilibrium point is obtained by solving for the zeros of the 

right hand sides of the aircraft equations of motion simultaneously. Mathematically, this is 

achieved using the conventional numerical optimization methods which are iterative and 

require more number of iterations. The typical flight envelope of a fighter aircraft ranges 

from 20% to 200% of the speed of sound and sea level to 15 km in terms of altitude.                       

This places significant computational demand to generate hundreds of linearized aircraft 

mathematical models needed for control law design and evaluation. The Approximate Trim 

calculations, proposed in this paper, provide good initial guess values throughout the flight 

envelope for the conventional optimization methods resulting in faster convergence.            

Thus the time and effort required to generate the aircraft mathematical models is reduced. 

The aerodynamic database is obtained by wind tunnel testing. To reduce the wind tunnel 

testing costs, the aerodynamic database with respect to angle of attack is generated within 

the aircraft performance limits. This results in a reduction in the range of the aerodynamic 

data with respect to angle of attack as speed increases. Therefore, only three points are 

available for the interpolation at the extreme points in the flight envelope. In order to solve 

this problem, we propose barycentric (triangular) interpolation in combination with the 

conventional rectangular interpolation for these two dimensional tables. 

Keywords 

Flight Dynamics, Equilibrium Analysis, Numerical Optimisation, Flight Envelope, 

Interpolation. 
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Nomenclature 

h =  Altitude, m 

.

h =  Time derivative of Altitude, m/s 

XYI =  Inertia cross product 

YZI =  Inertia cross product 

ZXI =   Inertia cross product 

J =  Inertia Matrix 

L =  Rolling Moment 

M =  Pitching Moment 

N =  Yawing Moment 

1 2 3, ,L L L = Elements of Direction Cosine Matrix 

1 2 3, ,M M M  =Elements of Direction Cosine Matrix 

1 2 3, ,N N N  = Elements of Direction Cosine Matrix 

Bp =  Body axis roll rate      (deg/s) 

Bq =   Body axis pitch rate  (deg/s) 

Br =  Body axis yaw rate  (deg/s) 

Tp =  Earth axis Roll rate   (deg/s) 

Tq =  Earth axis Pitch rate (deg/s) 

Tr =  Earth axis Yaw rate (deg/s) 

EBT =  Transformation matrix from Earth to Body axis 

Bu =   Body Axis forward velocity, m/s 

Bv =    Body Axis lateral velocity, m/s 

Bw =   Body Axis vertical velocity, m/s 

.

Bu =   time derivative of Body Axis forward velocity, m/s
2
 

.

Bv =    time derivative of Body Axis lateral velocity, m/s
2
 

.

Bw =   time derivative of Body Axis vertical velocity, m/s
2
 

NV =    Inertial A/c Velocity along North  |  

EV =      Inertial A/c Velocity along East     | wrto Earth Axis 

DV =   Inertial A/c Velocity along Down  | 
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.

NV =      Time derivative of Inertial A/c Velocity along North  | 

.

EV =    Time derivative of Inertial A/c Velocity along East  |wrto Earth Axis  

.

DV =    Time derivative of Inertial A/c Velocity along Down  | 

x =  Position in X direction, m 

y =  Position in Y direction, m 

.

x =  Time derivative of Position in X direction, m/s 

.

y =   Time derivative of Position in X direction, m/s 

  =   angle of attack, deg 

  =  angle of sideslip, deg 

.

  =   time derivative of angle of attack, deg/s 

.

  =  time derivative of angle of sideslip, deg 

  =  flight path angle, deg 

  =  aircraft bank angle, deg 

  =  aircraft pitch angle, deg 

  =  aircraft heading angle, deg 

.

  =  time derivative of aircraft bank angle, deg 

.

  =  time derivative of aircraft pitch angle, deg 
.

  =  time derivative of aircraft heading angle, deg 

  =  Air Density of Air Kg/m
3
 

Qbar  = Dynamic Pressure, pascals 

CL  =  CL-AoA curve slope 

AoA = Angle of Attack, deg 

CL = Lift force coefficient 

CD = Drag force coefficient 

Cm = Pitching moment coefficient 

Mass    =      Aircraft mass in Kg 

Sref =    Aircraft wing area, m
2
 

PLA    =  Power Lever Angle (deg) 

n          =  Load Factor (ratio of Lift force to Weight) 
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1. INTRODUCTION 

The flight envelope of any fighter aircraft is encompassed by Mach number 

and altitude and ranges from 20% to 200% of the speed of sound and sea 

level to 15 km altitude.  Aircraft exhibit non-linear behavior within this 

range of speeds. They are represented by non-linear mathematical models.  

A common approach for analyzing aircraft dynamics consists of local 

stability and controllability analysis by linearizing the equations of motion. 

This requires linearization of nonlinear aircraft dynamic model at many 

chosen analysis points within the flight envelope. Before linearization, it is 

required to determine the value of the states and controls such that the 

aircraft is in at equilibrium at each analysis point. The linearisation of 

aircraft non-linear model about an operating point is achieved by using 

small perturbations in the motion of airplane about the equilibrium point. 

The linear system matrices are determined by numerical perturbation using 

the Taylor series expansion approach about the equilibrium. As the 

linearization needs to be carried at hundreds of such points within the flight 

envelope, there is a need to develop efficient computational methods for this 

purpose.  

 

Modern fighter aircraft are designed to be unstable to achieve high 

maneuverability, and therefore a flight controller is required for stability and 

control augmentation (Bugajski and Enns, 1992; Chetty, Deodhare and 

Misra, 2002). Towards this flight controller design, we need to generate 

hundreds of linearized aircraft mathematical models.  

 

Conventional multivariable numerical optimization methods are used for 

aircraft trim (Stevens and Lewis, 1992; Rolfe and Staples, 1991).                       

The aircraft trim is achieved by solving the first order differential equations 

that represent aircraft equations of motion. These conventional methods may 

take more number of iterations to arrive at the solution. Hence, the 

generation of hundreds of linearized aircraft mathematical models for flight 

control laws design and evaluation requires more time and effort.   

 

The large aerodynamic and engine databases representing a fighter aircraft 

are generally accessed for analysis and synthesis tasks by using linear 

interpolation. This database will be in the form of multidimensional data 

tables. As an example to represent the aerodynamic and engine 

characteristic of a typical tailless delta wing fighter aircraft, about 400 data 

tables are used. The aerodynamic database is normally generated using wind 

tunnel testing, analytical and Computational Fluid Dynamics tools. 

Generally, linear interpolation with rectangular points is used for the two 

dimensional data tables (Rolfe and Staples, 1991; Allerton 2009).                       

To reduce the wind tunnel testing outside the flight envelope, the 
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aerodynamic database is made available with two dimensional data tables 

tapered at the extreme points of flight envelope. This is most commonly 

seen in case of dependency of the various aerodynamic parameters as joint 

functions of aircraft speed and its angle of attack (i.e., angle made by the 

wing with respect to the direction of air flow). The conventional way of 

linear interpolation requires four points, whereas in this case at the 

boundaries of the flight envelope only three points are available for 

interpolation. Therefore, to exploit the full aerodynamic or engine database, 

use of suitable interpolation schemes is required.  

 

In this paper, authors propose to use approximate trim calculations that 

provide close to trim initial guess values for the conventional optimization 

routines. This will result in faster convergence and hence reduced time and 

effort to generate hundreds of linearized aircraft mathematical models.                   

It allows us to generate equilibrium points throughout the flight envelope.                

It is also proposed to employ the barycentric interpolation scheme where 

only three points are available for interpolation in addition to the 

conventional rectangular interpolation thus enabling full coverage of 

aerodynamic database. 
 

2. METHODOLGY 

As discussed already, we need good initial guess values for the optimization 

methods for faster convergence.  The process of obtaining aircraft trim using 

optimization method and the triangular interpolation are discussed now. 

2.1 Aircraft Trim 

Aircraft Trim or Equilibrium is defined as the state of aircraft when resultant 

forces and moments about its center of gravity (c.g.) is zero.  

Mathematically, an aircraft is said to be in equilibrium or trim state when all 

the state derivatives vanish simultaneously i.e. will be equal to zero.                   

This assumes a certain number of states to define the aircraft flight.   

The well known set of equations of flight that adequately describe rigid 

airplane motion is the Six Degree Of Freedom (6 DOF) motion equations. 

The derivation of this is described in any standard text book (Mcruer, 

Ashkenas and Graham, 1973;Nandan Sinha and Ananthkrishnan, 2013). 

This equation set is given by Eqns (1) & (2).   
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The above six degree freedom equations have six states namely uB ,vB, wB , 

pB  qB, rB. Further six more states namely x, y, h, , ,   are derived from 

the above six states to completely describe the aircraft flight state as in 

equations (3) and (4). 
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All of these twelve states can be simultaneously constant for an aircraft only 

on ground. This means, for a rigid aircraft, equilibrium is possible only if 

the aircraft is resting on ground. However, following assumptions are made 

for up and away flight states. With assumption that the Earth is flat, last 

three equations and heading rate can be ignored. Now, we are left with only 

eight equations which can result in a quasi steady state. The following flight 

states which fall into the equilibrium state defined above are very useful for 

flight dynamics analysis.  

2.1.1 Flight Trim States 

For the aircraft to be trimmed for different flight states, constraints relevant 

to that state need to be satisfied in addition to the equality mentioned above. 

Each trim type or flight state can be described by mathematical constraints 

according to the nature of the aircraft flight. The description of different 

well understood states follows next.   

 

Straight and Level flight:       

A level flight is defined as flight with wings level implying zero roll angle, 

constant flight path angle for a given Mach number and altitude.                     
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When translated to mathematical constraints, these conditions are given by                

Eqn (5). 
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If h
.

 is zero, it means a wings level, horizontal flight with zero flight path 

angle. 

If h
.

 is not equal to zero, then the flight can be climbing or gliding with 

wings level   

 

Level Turn: 

A steady turning flight is that where the wings are not level (  0 ). It can 

still be a level turn with constant turn rate at a specified load factor for a 

given mach and altitude.  The equilibrium conditions in this equilibrium 

flight state are given by Eqn (6). 
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Pull Up   / Push over:          

A pull-up  is defined as that state of the aircraft where the aircraft  has its 

wings level and is pitching up at a constant pitch rate or load factor for a 

given Mach number and altitude.  The steady sate conditions to be satisfied 

for a steady pull-up are given by Eqn (7). 
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  = 0 (   0  or 0Bq  ) and h  0   

For a pull-up, load factor is greater than one and for a push-over, load factor 

is less than one.  

2.1.2 Trimming Strategy 

Equilibrium flight is obtained mathematically by solving the nonlinear 

aircraft equations of equation that make the state derivatives
0,,,,, BBBBBB wvurqp  . Multi-variable numerical optimization algorithm 
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(Newton-Raphson) is used to solve these nonlinear flight equations.                       

The control settings obtained as a result of solving the nonlinear flight 

equations (aircraft trim) are referred to as trim points and equilibrium 

analysis is carried out at these trim points.  Any flight state at trim has to 

satisfy the steady state conditions discussed above according to the nature of 

that flight state. The equilibrium flight is obtained mathematically by 

solving the non-linear flight equations that make the state derivatives p
B

.

,

qB

.

, r B

.

,  ,  , u v wB B B    0 along with the constraint equations according to the 

flight state. In the computing environment, a multi-variable numerical 

optimization algorithm is used to solve the non-linear flight equations by 

adjusting the control variables and other appropriate state variables to satisfy 

the relevant equalities discussed above.  Associated with the six equations 

of accelerations are the six unknown controls. The influence of each of the 

control settings on the corresponding accelerations are given by, 

* the Power Level Angle(PLA) controlling the acceleration   V  or uB  

* the aileron setting  used for controlling roll acceleration, p
B

.

 

* the rudder controlling the yaw acceleration, r B

.

 

* the elevator controlling the pitch acceleration, qB

.

 

* alpha controlling the vertical linear acceleration, 
.

  or wB  and 

* beta controlling the lateral linear acceleration, 
.

  or vB  

 

The use of all six equations results in six degree of freedom trim. A block 

schematic of trim algorithm is shown in Figure 1. 
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Figure 1.  Aircraft Trim Algorithm 

 

It is observed that the conventional optimization routines may take more 

number of iterations (around 100) to arrive at the solution if the initial guess 

values are not close to trim.  As we need to generate hundreds of linearised 

aircraft mathematical models for flight controller design, it is desirable to 

have faster convergence for the optimization methods i.e. arriving at 

solution in less number of iterations. This leads to a reduction in the design 

time and effort. Hence, we have proposed to use approximate calculations 

that can provide close to trim initial guess values.  

 

With an example of straight level flight, the steps involved in approximate 

trim calculations are explained below.  

The approximate trim calculations for the Steady Level Flight case at the 

chosen Mach number and Altitude are given by: 

 

2
V**5.0Qbar   

                                                                          (8) 
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From equation (8), we can see that the approximate value of trim angle of 

attack can be calculated. Figure 2 provides the procedural steps for 

approximate trim calculations. 

 

1. From Figure 2, it is noticed that corresponding to the trim Angle of 
Attack (AoA), drag can be computed from the CD – AoA curve.  
 

2. For a level flight, Thrust = Drag at equilibrium/trim. Thus we obtain 
the thrust.   

 
3. Further, it is understood that the thrust is function of Mach number, 

Altitude and throttle position. Knowing the thrust value, Mach 
number and altitude, the power lever angle (PLA) required for trim 
is estimated based on the inverse calculations of engine database.   

From the static engine database, 

   ( , , )Thrust f Machnumber Altitude PLA  

With inverse formulation, 

   1
( , , )PLA f Machnumber Altitude Thrust

  

 

Morelli has addressed the issue of the global non-linear parametric 
modeling for steady aerodynamics with an example of F16 (Morelli, 
1995; 1998). The concept of replacing engine database in the table 
look-up form by the global non-linear polynomial models has been 
used here. The technique of multivariate orthogonal functions in one 
and two variables is used to arrive at the global non-linear 
polynomial models. The technique of multivariate orthogonal 
polynomials also has been used to model the unsteady aerodynamics 
(Abhay Pashilkar and Pradeep, 1999). 

The global nonlinear polynomial models as function of Mach 
number and altitude are obtained.  The polynomial coefficients are 
given below.  

a1 = 29302*mach**2 - 60149*mach + 15661 
 a2 = 39*mach**2 + 1104*mach - 75 
 a3 = 164380*mach**2 -529390*mach + 424320 
 a4 = 7528*mach**2 - 8797*mach - 1985 
 T1 = a1*mach + a2*za/1.e3 
 T2 = a3*mach + a4*za/1.e3 
 platrim  = 30. + (Drag - T1) / (T2-T1) *(130.-30.) 
  
(where  mach  is Mach number and  za is pressure altitude) 
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4. Generally, pitching moment coefficient is comprised of aerodynamic 
component and engine component Corresponding to the thrust 
obtained in Step (2), the pitch moment contribution due to engine is 
computed first and thereby the corresponding pitching moment 
coefficient (i.e. Cmthrust). Similarly, Cmaero will be computed using 
the Cm – AoA curve. 
 
Hence, Cmtotal = Cmthrust +  Cmaero   
 

5. For trim, Cm should be equal to zero.  The elevator required to 
satisfy Cmtotal=0 is the trim elevator.  In this manner, we obtain 
approximate trim values of AoA, throttle position and elevator. This 
is a non iterative procedure 

These approximate trim values are used as initial guess values for 

conventional optimization method. 
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For Level Flight with Mach number and altitude:

Qbar = 0.5*ρ*V2

αtrim  = (mass*9.81)/(Qbar*Sref*CLα)

αtrim

CL

CD

αtrim

For Level Flight with Mach number and altitude:

Obtain CD from CD – Alpha curve.

Thrust = Drag (Level Flight)

Thrust = f(Mach number, Alt, PLA)

Inverse Formulation results in

PLA = f-1(Mach number, Alt, Thrust)

Accordingly, obtain Cm(thrust)

Cm

αtrim

For Level Flight with Mach number and altitude:

Cm(tot) = Cm(aero)+Cm(thrust)

For trim, Cm(tot) = 0

=> detrim = (Cm(tot)-Cm0-Cmα*αtrim)/Cmde

 
Figure 2. Procedural steps for Approximate Trim Calculations 
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The same steps are used for the approximate trim calculations of pull up and 

level turn trim options. The approximate trim calculations for the pull up / 

push over and level turn are given below.   

 

Pull Up / Push over (for given Mach number, Altitude and the Load 

factor, n) 

                                                                   (10)

 

 

 

 

 

 

Level Turn (for given Mach number, Altitude and Alpha) 

                                                  (11)

 

 

 

 

 

 

 

 

 

As these values are very close to trim, the convergence is faster and in very 

less number of iterations (around 10) we can obtain the trim. This leads to 

significant reduction in time and effort when it is required to generate 

hundreds of linearized aircraft mathematical models for control law design 

and evaluation. 
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In the following section, the issue of interpolation where only three points 

are available is discussed. 

2.2 Barycentric Interpolation 

Large aerodynamic and engine databases are used for the flight dynamic 

analysis. This data is accessed for analysis and synthesis tasks by table look 

up and linear interpolation. The reason for some of the data tables made 

available in the hypercube format is already discussed. The typical Mach 

number and AoA envelope is shown in Figure 3 where at higher Mach 

numbers limited range of angle of attack will be available. 

 

 

Figure 3. Angle of Attack – Mach number Envelope for a fighter aircraft 

(black vertical line indicates Mach number 1.0) 
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Table 1.   2D table as function of Mach number and Angle of Attack 

M =>        .00       .        .30        .50        .60 .70        .80        .90        .95       1.00       1.05       1.10       1.20 
AOA             
   -15.00      .2130     .2130     .2019     .1877      .1883        
   -14.00      .2130 .2130 2019   .1877    .1883         
   -12.00      .2130     .2130     .2019     .1877      .1883    .1500           
   -10.00     .2130      .2130      .2019     .1877      .1883       .1510          .1508     .1628     .1610      .1819      .1700  
     -8.00    .2130   .2130   .2019   .1877   .1883   .1524  . 1508     .1628     .1610     .1819     .1700     .1443 
     -6.00       .2130      .2130      .2019      .1877      .1883      .1539      .1508      .1628      .1610      .1819      .1700      .1443 
     -5.00       .2130     .2130     .2019     .1877    .1883    .1543    .1508    .1628    .1610    .1819     .1700   .     1443 
     -4.00       .2130      .2130      .2019      .1877      .1883      .1543      .1508   .  1628      .1610      .1819      .1700      .1443      
     -2.00       .2130      .2130      .2019      .1877      .1883      .1530      .1508      .1628      .1610      .1819      .1700      .1443      
        .00       .2072      .2072      .1965      .1822      .1826      .1532      .1514      .1618      .1657      .1849       .1699      .1382      
      2.00       .2034      .2034      .1940      .1810      .1814      .1509      .1502      .1599      .1689      .1816      .1659      .1320      
      4.00       .2036      .2036      .1920      .1797      .1799      .1490      .1465      .1573      .1655      .1734      .1586      .1270      
      6.00       .2039      .2039      .1892      .1761      .1763      .1447      .1397      .1514      .1547      .1649      .1510      .1223      
      8.00       .2052      .2052      .1894      .1755      .1757      .1402      .1324      .1435      .1418      .1554      .1438      .1199      
    10.00       .2076          .2076      .1927      .1783      .1784      .1382      .1300      .1358      .1330      .1486      .1408      .1202 
    11.00       .2081      .2081      .1930      .1783      .1781      .1384      .1315      .1332      .1310      .1486      .1420      .1220    
    12.00       .2083      .2083      .1931      .1783      .1784      .1387      .1323      .1301      .1292      .1513      .1444      .1238     
    13.00       .2085      .2085      .1927      .1790      .1788      .1333      .1303      .1255      .1273      .1528      .1442      .1244     
    14.00       .2080      .2080      .1910      .1787      .1787         .1314      .1256      .1200      .1222      .1493      .1391      .1213   
    15.00       .2078      .2078      .1895        .1778      .1782      .1316      .1223      .1172      .1150      .1398      .1294      .1134    
    16.00       .2083        .2083      .1879      .1758      .1771      .1352      .1203      .1160      .1107      .1294      .1200      .1037    
    17.00       .2093      .2093      .1877      .1756      .1770         .1394      .1221      .1172      .1101      .1220      .1156      .0979 
    18.00       .2104      .2104      .1904      .1783      .1794        .1447      .1250      .1189      .1107      .1163      .1136      .0961   
    19.00       .2115      .2115      .1948      .1831      .1849      .1483      .1284      .1199      .1104      .1128      .1125      .0986 
    20.00       .2132      .2132      .2011      .1899      .1918      .1506      .1288      .1179      .1094      .1104      .1104      .0950 
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    21.00       .2157     .2157     .2079     .1967     .1987     .1527      .1283     .1155     .1081     .1093      .1093  
    22.00       .2189     .2189     .2158     .2034     .2035     .1587      .1245     .1120      .1067    .1081      .1108  
    23.00       .2225   .2225   .2227   .2088   .2052   .1654     .1213     .1107      .1045    .1051      .1103  
    24.00       .2269     .2269     .2285     .2139     .2087     .1655      .1171     .1113      .1029    .1075   
    25.00       .2312     .2312     .2345     .2208     .2179     .1612      .1138     .1137      .1050    
    26.00       .2345     .2345     .2384     .2269     .2281     .1573      .1122     .1144               
    27.00       .2370     .2370     .2386     .2299     .2341     .1575      .1143     .1120               
    28.00       .2393     .2393     .2356     .2305     .2364     .1537      .1191     .1102     
    29.00       .2394     .2394     .2292     .2288     .2380     .1467       
    30.00       .2377     .2377     .2237     .2252     .2271     .1334       
    31.00       .2342     .2342     .2210     .2222         
    32.00       .2295     .2295     .2171     .2183         
    33.00       .2242     .2242     .2297     .2277         
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Accordingly, from Table 1, it is observed that at the areas marked with ovals 

only three points available for interpolation instead of conventional four 

points. To address this issue, we used Barycentric interpolation this 

facilitates full coverage of the aerodynamic database. 

 

Given a point r which lies within a triangle bounded by three vertices (

32 rrr ,,1 ) in the plane, the barycentric weights ( 321 ,,  ) for each vertex 

respectively are given by (Wikepedia, 2014): 
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where, 

 

),(),,(),,(),,( 33322211 yxyxyxyx  rrrr1  

 

If the function values at the three vertices ( 32 rrr ,,1 ) are given by the scalars (

321 ,, zzz ) respectively, then the linearly interpolated value at point r  is given 

by: 





3

1i

ii zz   

It is noted that the weights ( 321 ,,  ) are all greater than zero if the point r

lies within the triangle. If the point lies on the edge, the weight of the 

opposite vertex is zero. 

 

3. RESULTS 

 

As discussed already, with the approximate trim calculations used as initial 

guess values for conventional optimization methods we can have faster 

convergence.  Accordingly, a study is carried out for different flight 

conditions within the flight envelope for a level flight.  The results are 

tabulated and presented in Table 2.  
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Table 2. Comparison of trim without and with Approximate Trim Calculations 

Sl No. Case Conventional 

Optimization 

method 

Conventional 

Optimization 

method 

with approximate 

trim calculations 

1 0.3100M and 7.7374 km 198 10 

2 0.4881M and 12.198 km 163 11 

3 0.4000M and 4.572 km 86 17 

4 0.7889M and 9.6387 km 43 15 

5 1.2458M and 9.6387 km 47 24 

 

With the Barycentric interpolation, it is possible to cover full aerodynamic 

database with respect to Figure 3. 

 

4. CONCLUSIONS 

For the nonlinear flight dynamic analysis and flight controller design, 

hundreds of linearised aircraft mathematical models are required. Aircraft 

trim is obtained by using the conventional numerical optimization methods. 

Approximate trim calculations are used to provide good initial guess values 

for the optimization methods for faster convergence. This also ensures 

global convergence within the flight envelope for the generation of 

equilibrium points. Similarly, for the cases at extreme pockets of the 

aerodynamic database where only three points are available for 

interpolation, we have used the Barycentric or triangular interpolation. 

Employing approximate trim calculations for optimization methods and 

Barycentric interpolation result in a computationally efficient nonlinear 

flight dynamic analysis and flight controller design with full coverage of 

aerodynamic database. 
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