
International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 1

Concurrency Control Mechanism

for Nested Transactions in Mobile

Environment

Ms. Nyo Nyo Yee

Faculty of Information and Communication Technology

University of Technology (Yatanarpon Cyber City)

 Pyin Oo Lwin, Mandalay Division, Myanmar

Ms. Hninn Aye Thant
Faculty of Information and Communication Technology

University of Technology (Yatanarpon Cyber City)

 Pyin Oo Lwin, Mandalay Division, Myanmar

ABSTRACT
In mobile environment, mobile host can initiate transactions and that transactions may be

executed at mobile host or fixed host. Most of the transactions use in mobile environment is

flat transactions. In modern world, most of the applications are complex and long-running.

Flat transactions could not work properly in complex and long-running applications.

Moreover, flat transactions can be performed only commit or rollback and cannot save

intermediate results. If transactions rollback, the whole transaction will be re-started. To

solve this problem, we proposed a method that based on closed nested transactions because

nested transactions are suited for complex application and can save intermediate result.

Proposed system is based on existing Two-Shadow Speculative Concurrency Control

(SCC-2S) mechanism that solves concurrency control problem (read-write conflict) for

nested transactions and complex application. Proposed system solves the facts that could

not solve (write-write conflict) in existing SCC-2S algorithm and also adds Priority Control

mechanism to improve the performance of the system and to reduce miss deadlines. This

method is intended for Mobile Real-Time Database System (MRTDBS). Concurrency

Control will perform at the Fixed Host and the results are returned back to the

corresponding Mobile Hosts.

Keywords

Concurrency control, fixed host, flat transaction, real-time database, nested transaction.

1. INTRODUCTION

Mobile Real-time Database System (MRTDBS) provide information to

Mobile Host (Mobile User). Primary objective of MRTDBS is to minimize

missed deadlines. Mobile host can initiate transactions from anywhere and

at anytime. When shared data item is updated by multiple transactions from

mobile devices at the same time, Concurrency Control(CC) techniques are

required to guarantee timely access and correct results (Consistency).

General characteristics of mobile environments like mobility, low

bandwidth, limited battery power, limited storage, frequent disconnections

etc. makes concurrency control more difficult [10].

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 2

Various concurrency control algorithms differ from the time when conflicts

are detected, and the way they are resolved. Pessimistic Concurrency

Control (PCC) and Optimistic Concurrency Control (OCC) alternatives

differ from conflict detection and conflict resolution. PCC locking protocols

detect conflicts as soon as they occur and resolve them using blocking,

while OCC protocols detect conflicts at transactions commit time and

resolve them using restarts.

Speculative Concurrency Control (SCC) algorithms combine the advantages

of both PCC and OCC algorithms, and avoid their disadvantages. SCC

algorithm similar PCC algorithm in those potentially harmful conflicts is

detected as early as possible, and it increases the chances of meeting timing

constraints. SCC resembles OCC in that it allows conflicting transactions to

proceed concurrently, thus it avoids unnecessary delays to meet timely

commitment. SCC allows many shadows for uncommitted transactions. But,

SCC-2S allows a maximum of two shadows per uncommitted transaction to

exist in the system at any point in time: a primary shadow and a standby

shadow [1]. Primary shadow means the original nested transaction query to

access shared data. Standby shadow means the copy of the original query

that does not contain the portion of the query that the primary shadow is

already performed.

The rest of this paper is organized as follows: Section 2 briefly introduce

mobile database environment. In section 3, we present our proposed method

and proposed system architecture. In section 4, we present mathematical

expression of proposed method and Section 5 shows performance analysis

for pessimistic concurrency control and our proposed method. Section 6

draws the conclusion.

2. MOBILE DATABASE ENVIRONMENT

Mobile database environment consists of Mobile Host (MH), Fixed Host

(FH) and Base Station (BS) .The communication of the MH and FH is

supported by BS. FH and BS are connected with a wired network. Some

MH have Database Management System (DBMS) module to perform

database operations. Proposed system architecture contains MHs and FH.

FH has database system module to perform database operation and MH does

not require having database system module. In mobile environment, MH

can process its workload in continuously connected mode or in disconnected

mode or in intermittent connected mode [8]. In proposed system

architecture, mobile host can live intermittent connected mode and after

fixed host had performed database operation, the results are returned back to

the corresponding mobile host.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 3

There are three type of data dissemination mode in mobile environments. In

Broadcast Mode (push process), On-Demand Mode (pull process) and

Hybrid Mode [8].Our proposed model use On-Demand Mode.

2.1 Classification of Transactions

There are three types of transactions used in database system. They are flat

transactions, nested transactions and distributed transactions. All of these

transactions have four properties. These properties are Atomicity,

Consistency, Isolation (Independence) and Durability (or Permanency).

Flat transactions access a single database and adequate for simple

applications [10]. Nested Transactions are constructed from a set of sub-

transactions. Each sub-transaction may also have sub-transactions, and

nesting can occur to arbitrary depth. Nesting of transactions can be

represented by a transaction tree. Transaction at the root of the tree is called

top-level transaction (TL-transaction); others are called sub -transactions.

There are two types of nested transaction model, open nested transaction

model and closed nested transaction model.

Figure 1. Open Nested transaction Model

parent

transaction

T11

T12

T13

parent

transaction

T21

T22

T23

Transactioin T1 Transactioin T2

Figure 2. Closed Nested transaction Model

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 4

In open nested transaction model, parent transaction does not enforce

restriction of the execution, rollback, and commitment of its sub-

transactions. The parent transaction only invokes sub-transaction, and the

sub-transactions executed independently to each other and to the parent[4].

Open nested transaction has only one parent transaction and the transaction

is broken down smaller parts and can perform parallel between sub-

transaction. Locks are released before parent transaction. Locks are

inherited from parent transactions and perform intra-transaction parallelism

[6]. Figure 1 defines open nested transaction model. In closed nested

transaction model, locks are released after parent transaction and perform

inter-transaction parallelism and can be used for the two or more transaction

access the same data item concurrently [3]. Closed nested transaction is

especially designed for conflict between one nested transaction and other

nested transactions not only between in one transaction. Figure 2 defines

closed nested transaction model.

Distributed transactions concern with the division of transactions due to

need of accessing distributed resources. Special distributed algorithms are

needed to handle locking of data and committing of transactions [9].

2.2 Execution Modes in Mobile Environment

Transactions are initiated at mobile host but may be executed on mobile

host or fixed host or the execution may be distributed between mobile host

and fixed host respectively. There are five execution modes in Mobile

Environment. They are

• Complete Execution on Fixed Network

Transaction is initiated at mobile host but is completed executed at fixed

network. In this approach, mobile host acts as a thin client.

• Complete Execution on MH

Transactions are initiated at mobile host and are executed on mobile host.

This approach requires mobile hosts to have processing and storage

capabilities as well as managing data. But, reconciliation is needed with

fixed host at some point in time.

• Distributed Execution on MH and Wired Network

Transaction is initiated at mobile hosts and the execution is distributed

among mobile host and fixed host. A sub-transaction is executed at fixed

host and another one at mobile host. This approach helps in minimizing the

communication between the fixed host and mobile hosts.

• Distributed Execution among several MHs

Transaction is distributed among several mobile hosts for execution. It

provides a peer-peer strategy. A mobile host acts as a server for other

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 5

mobile hosts so that the execution is distributed between them. The

selection of a mobile host for execution of a transaction is location based.

• Distributed Execution among MHs and FHs

Transaction execution is distributed among several mobile hosts and fixed

hosts respectively. In this approach, multiple parties may be involved [7].

3. PROPOSED SYSTEM

In our system, mobile user sends query using an uplink channel (pull

process). To process the request, database server in Fixed Host use proposed

method Two-Shadow Speculative Concurrency Control (SCC-2S) with

Priority that avoids conflict (access the same data) to control concurrent

access. To increase the degree of parallelism in the execution of long

running transaction is primary objective of nested transaction. This system

aim for strict deadline nested transactions to improve inter-transaction

concurrency. Mobile Host (MH) can live intermittent connected mode (not

need to connect the database server) while Fixed Host (FH) perform

database operation. After the database operation had performed, FH returns

the result back to corresponding MH. MH does not require having Database

System (DBMS) module to perform database operations. So, MH acts as a

thin client. Figure 3 define flow diagram for proposed system.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 6

Begin

Result send to the

corresponding

Mobile Host

Primary Shadow is created

and executed

If conflicts

or not

Standby Shadow is created

Primary shadow is aborted

Standby shadow is promoted to

primary shadow and executed

End

Transaction from

Mobile Hosts

No

Check conflict at the

same time

Yes

Check the required data

can get only one database

or not

Yes

No

No

Yes

Process the

Transaction

 Figure 3. Flow diagram for proposed system

During the transactions run, if conflicts occur between the transactions,

SCC-2S with Priority algorithm is used to solve the conflict. When the two

transactions encounter (read-write) conflict, the read transaction create the

standby shadow (copy the transaction) where the conflict is detected. This

standby shadow excludes the part of the transaction that the primary shadow

(original transaction) already performed. When the two transactions

encounter (write-write) conflict, the transaction with late time creates the

standby shadow. But the two transactions encounter (write-write) conflict at

the same time, our proposed system uses priority control mechanism to

determine which transaction should create the standby shadow. Figure 4

defines proposed system architecture.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 7

DB

MH

Fixed Host

MH MH

RTDBS is controlled by

SCC-2S with Priority

Algorithm

MH

MH

DB

Figure 4. Proposed system architecture

3.1 Priority Control Mechanism

In this theory, we define Twt1 and Twt2 are write lock-requesting transactions.

Transaction is defined TF if it access data items available at only one

Database Module. Otherwise it is defined TS transaction. If transaction is

TF, it is assigned high priority otherwise it is assigned low priority.

Write Lock Conflict (Twt1, Twt2)

 Begin

 if Priority(Twt1)> Priority(Twt2)

 Create standby shadow for transaction Twt2

 else if Priority(Twt1)< Priority(Twt2)

 Create standby shadow for transaction Twt1

 Else

Create standby shadow that have greater access item

 end if

 End

3.2 Two Shadow Speculative Concurrency Control(SCC-2S) with

Priority

Speculative Concurrency Control (SCC) is especially designed for real-time

database applications. It relies on the use of redundancy to ensure that

serializable schedules are discovered and adopted as early as possible, that

increase in timing commitment of transactions with strict timing constraints.

Two-Shadow SCC algorithm (SCC-2S), a member of the SCC-nS family,

and minimal use of redundancy. SCC-2S uses at most two shadows for each

transaction, primary shadow and standby shadow. Original SCC-2S

algorithm solves read/write conflict for concurrent transactions. For our

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 8

contribution, we want to solve write/write conflict for nested transaction and

also add priority control mechanism for nested transaction. The detailed

explanation for SCC-2S is:

Let Tj be any uncommitted transaction in the system. The primary shadow

for Tj runs (among all the other transactions with which Tj conflicts) to

commit. Therefore, it executes without incurring any blocking delays. At

that time, standby shadow for Tj, is subjected to blocking and restart. It is

kept ready to replace the primary shadow, if replacement is needed.

The SCC-2S algorithm resembles Optimistic Concurrency Control with

Broadcast Commit (OCC-BC) algorithm in that primary shadows of

transactions continue to execute either until they validate or commit or until

they are aborted. The difference is that SCC-2S keeps a standby shadow for

each executing transaction to be used if that transaction must abort. The

standby shadow is basically a replica of the primary shadow, except that it is

blocked at the earliest point where a Read-Write conflict is detected

between the transaction it represents and any other uncommitted transaction

in the system. If required, the standby shadow is promoted to become the

primary shadow, and execution is resumed from the point where potential

conflict was discovered [5].

Illustration of SCC-2S works is, shown in Figure 5. The two mobile units

MU1 and MU2 access the same data item x. MU1 execute Transaction T1

to write data item x. MU2 execute Transaction T2 to read data item x. Both

transactions T1 and T2 start with one primary shadow, namely T1
0

and T2
0

respectively. When T2
0
 attempts to read object x, a potential conflict is

detected. At this point, a standby shadow, T2
1
, is created. The primary

shadows T1
0
 and T2

0
 execute without interruption, whereas T2

1
 blocks.

Later, if T1
0
 successfully validates and commits on behalf of transaction T1,

the primary shadow T2
0

is aborted and replaced by T2
1
, which resumes its

execution, we hope to commit before its deadline [2].

Figure 5. Schedule with a standby shadow promotion

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 9

It is possible that multiple conflicts develop between executing transactions.

The three mobile units MU1, MU2 and MU3 access the same data. MU1

execute Transaction T1 to write data item y. MU2 execute Transaction T2 to

read data item x and data item y. MU3 execute Transaction T3 to write data

item x. Figure 6 illustrates the behavior of SCC-2S when a second conflict

develops between T2 and another transaction T3. In particular, the primary

shadow T1
0

of T1 attempts to write an object y that both shadows T2
0
 and T2

1

had previously read. In this case, the primary shadow T2
1

create the standby

shadow T2
2
 to solve conflict with transaction T1.

The SCC-2S algorithm allows at most two shadows for the same transaction

to co-exist at any given time. In particular, after T2
1
 is promoted to become

the primary shadow for T2, a standby shadow T2
2
is forked off to account for

the read-write conflict between T2
1
 and T1[2].

Figure 6. Schedule with two standby shadows

For our contribution, we add write-write conflict for concurrency control in

Figure 7. The two mobile units MU1 and MU2 access the same data item x.

MU1 execute transaction T1 to write data item x. MU2 execute Transaction

T2 to write data item x. Write conflict time for transaction T2 late. So

transaction T2 create standby shadow. For example, Figure 8 defines closed

nested transaction with their time. Transaction T1 perform write operation

on three database items(a,x,z) and transaction T2 perform write operation on

three items (b,x,y). Figure 9 shows the time when using our proposed

method.

Figure 7. Schedule with a standby shadow promotion for write-write conflict

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 10

Wb
Wx Wy

T2
0

20 40 60 80

10 1303020 70605040 12011010090800

Wa
Wx Wz

T1
0

10 30 50 70

Figure 8. Sub-transactions with their time

10 1303020 70605040 12011010090800

Wa Wx Wz

T1
0

10 30 50 70

Wb Wx Wy

T2
0

20 40 60 70

Wx Wy Wy

T2
1

40 60 90 11070

Wx

Standby shadow for T2

 and block at first time

Transaction from T1

 commit at time 70 and standby

shadow start operation and finish

at time 110

Figure 9. Proposed method with write-write conflict

But, in Figure 10 write conflicts occur at the same time. At that time, our

system use priority control mechanism. Assume transaction T1 is TF

transaction and transaction T2 is TS transaction. So, the standby shadow T2
1

is created for transaction T2. Figure 11 shows the time when using our

proposed method (SCC-2S with priority)

Figure 10. Schedule with a standby shadow promotion for write-write conflict

using priority control mechanism

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 11

10 1303020 70605040 12011010090800

Wa Wx Wz

T1
0

10 30 50 70

Wb Wx Wy

T2
0

10 30 50 70

Wx Wy Wy

T2
1

30 50 90 11070

Wx

Standby shadow for T2

and block at first time

Transaction from T1

commit at time 70 and standby

shadow start operation and finish

at time 110

 Figure 11. Proposed method with write-write conflict with priority

4. MATHEMATICAL EXPRESSION FOR PROPOSED METHOD

Let T = T1,T2 ,T3,…, Tm be the set of uncommitted transactions in the

system. Let T
primary

 and T
standby

 be primary and standby shadows executing

on behalf of the transaction set T, respectively. For each standby shadow Tr
j

in the system , a set WaitFor(Tr
j
) is maintained , which contains a list of

tuples of the form (Ts , Y), where Ts ∈ T and Y is an object of the shared

database. (Ts , Y) ∈
WaitFor(Tr

j
) implies that Tr

j
 must wait for Ts before

being allowed to read or write object Y. The notation (Ts, -) ∈ WaitFor(Tr
j
)

is used where there exists at least one tuple (Ts , Y) ∈ WaitFor(Tr
j
) , for

some object Y. Details of the SCC-2S algorithm are defined as follows:

1) When a new transaction Ts is requested for execution, a primary shadow

Ts
0 ∈

T
primary

 is created and executed.

2) Whenever a primary shadow Ts
i
wishes to read an object Y that has been

written by another shadow Tr
j
, then:

a) If there is no standby shadow for Ts

, a new shadow Ts

i+1
for Ts

 is

created, such that WaitFor (Ts
i+1

) = {(Tr , Y)}, otherwise

b) Let Ts
k
 be the standby shadow executing on behalf of Ts. If (Tr,,Y) ∉

WaitFor(Ts
k
), then WaitFor(Ts

k
) = WaitFor (Ts

k
) U {(Tr , Y)}.

3) Whenever a primary shadow Ts
i
 wishes to write an object X that has been

read by another shadow Tr
j
 , then:

a) If there is no standby shadow for Tr , then a new shadow Tr
j+1

 for Tr

is created and executed, such that WaitFor(Tr
j+1

) = {(Ts ,X)}, otherwise

b) Let Tr
k

be the standby shadow executing on behalf of Tr. If (Ts,,X) ∉

WaitFor(Tr
k
), then Tr

k
 is aborted and a new standby shadow Tr

k+1
 is started

with WaitFor(Tr
k+1

) = WaitFor(Tr
k
) U {(Ts , X)}.

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 12

4) A standby shadow Ts
i
 is blocked whenever it wishes to read any object

that has been written on behalf of any of the transactions in WaitFor(Ts
i
).

5) Whenever it is decided to commit a primary shadow Ts
i
 on behalf of

transaction Ts , then

a) If (Ts , -) ∈ WaitFor(Tr
j
) then the primary shadow of Tr is aborted,

Tr
j
 is promoted to become a primary shadow of Tr, and a new backup

shadow Tr
j+1

 is forked off Tr
j
, such that WaitFor (Tr

j+1
) = WaitFor(Tr

j
) - {(

Ts , -)}.

b) Any standby shadow of Ts is aborted[1].

Mathematical expression for write-write conflict

6) Whenever a primary shadow Tr
i
 wishes to write an object X that has been

written by another shadow Ts
j
, if the time of transaction Tr

i
 write an object

X is a little late than the time of transaction Ts
j
 write an object X then,

a) If there is no standby shadow for Tr
i
 , then a new shadow Tr

i+1
 for Tr

is forked off, such that WaitFor(Tr
i+1

) = {(Ts ;X)}, otherwise

b) Let Tr
k
 be the standby shadow executing on behalf of Tr . If (Ts;X) ∉

WaitFor(Tr
k
), then Tr

k
 is aborted and a new standby shadow Tr

k+1
 is started

with WaitFor(Tr
k+1

)= WaitFor(Tr
k

) U {(Ts;X)}.

Mathematical expression for write-write conflict with priority control

mechanism

7) Whenever a primary shadow Tr
i
 wishes to write an object X that has been

written by another shadow Ts
j
, if the two transaction Tr

i
 and Ts

j
 write the

same data object X at the same time , proposed system use priority control

mechanism. We assume transaction Ts
j
 access only one database module and

it is local transaction and transaction Tr
i
 access more than one database

module and it is global transaction.

a) If there is no standby shadow for Tr
i
 , then a new shadow Tr

i+1
 for Tr

is forked off, such that WaitFor(Tr
i+1

) = {(Ts ;X)}, otherwise

b) Let Tr
k
 be the standby shadow executing on behalf of Tr . If (Ts;X) ∉

WaitFor(Tr
k
), then Tr

k
 is aborted and a new standby shadow Tr

k+1
 is started

with WaitFor(Tr
k+1

)= WaitFor(Tr
k

) U {(Ts;X)}.

5. PERFORMANCE ANALYSIS

Most of concurrency control method based on Pessimistic and Optimistic

concurrency control. But in mobile environment, most of the method based

on Optimistic Concurrency Control. In Optimistic Concurrency Control,

each transaction perform database operation using three distinct phases- read

phase, validation phase and write phase. Moreover, Optimistic Concurrency

Control detects conflicts at transaction commit time and resolve them using

restarts. In mobile environment, to use Optimistic Concurrency Control

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 13

MHs have Database System Module to perform database operations. After

finishing database operation, MHs send result back to FH to check conflicts

or not. If conflicts occur between transactions, only one MH write request is

performed and other MHs must perform database operations again.

Pessimistic concurrency control is based on two phase locking protocol in

which a row is unavailable to users from the time the record is fetched until

it is updated in the database. So, if conflicts occur between transactions,

conflicted transactions perform database operation again. We compare our

proposed method with pessimistic concurrency control because of

pessimistic concurrency control perform database operation at FH. Figure 12

shows write-write conflicts occurs between transactions T1 and T2

.

Transaction T2 finish time is 130. Moreover, if transactions use more than

one database, this method can increase transaction processing time and can

reduce system performance. Figure 13 uses proposed method and

Transaction T2 finish time is 110. So, our proposed method can improve

system performance and can reduce transaction processing time.

10 1303020 70605040 12011010090800

Wa Wx Wz

T1
0

10 30 50 70

Wb Wx Wy

T2
0

70 90 110 130

Figure 12. Pessimistic concurrency control method perform operation and the finish

time for Transaction T2

10 1303020 70605040 12011010090800

Wa Wx Wz

T1
0

10 30 50 70

Wb Wx Wy

T2
0

10 30 50 70

Wx Wy Wy

T2
1

30 50 90 11070

Wx

Standby shadow for T2

and block at first time

Transaction from T1

commit at time 70 and standby

shadow start operation and finish

at time 110

Figure 13: Proposed method with write/write conflict with priority

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 14

6. CONCLUSIONS

Two Shadow Speculative Concurrency Control (SCC-2S) with Priority is a

powerful mechanism for concurrency control in Mobile Real-time

Database System (MRTDBS). SCC-2S with Priority provides high respond

time and throughput. SCC-2S with priority relies on redundancy to ensure

that serializable schedules are discovered and adopted as early as possible,

thus increasing the likelihood of the timely commitment of transaction with

strict timing constraints. SCC-2S with Priority decreases the number of

missed deadlines, reduce battery power and memory usage in the system.

In SCC-2S with Priority, shadow transactions execute on behalf of a given

uncommitted transaction so as to protect against the hazards of blockages

and restarts. Moreover, MHs cannot require to have database system

module and MHs can live thin clients.

7. ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Hninn Aye Thant, Associate

Professor, Faculty of Information and Communication Technology,

University of Technology (Yatanarpon Cyber City), Pyin Oo Lwin,

Myanmar, for her excellent guidance, where the initial scope of the thesis

was defined, and throughout the process of writing this thesis.

REFERENCES
[1] Azer Bestavros, “Speculative Concurrency Control” ,Computer Science Department,

Boston University, Boston, 02215, January 27, 1993.

[2] Azer Bestavros , Spyridon Braoudakis , Euthimios Panagos , “Performance Evaluation

of Two-Shadow Speculative Concurrency Control”, Computer Science Department,

Boston University, Boston, 02215, February 5, 1993.

[3] Ekaterina Pavlova, Igor Nekrestyanov “Concurrency Control Protocol for Nested

Transactions in Real-Time Databases” , St. Petersburg University, Russia, 1996.

[4] Hamzeh Khazaei,” Mobile Database System”,Math & Computer Science Department,

Amirkabir University of Technology, (Tehran Polytechnic), Hamzeh.

khazaei@aut.ac.ir

[5] Jun Chen, Yu Fen Wang, Jian Ping Wang,” Concurrency Control Protocol for Real-

Time Database and the Analysis Base on Petri Net”, Jun Chen et al., 2010, Advanced

Materials Research, 143-144, 12, October, 2010.

[6] Rajesh Badani, “Nested Transactions for Concurrent Execution of Rules: Design and

Implementation”, University of Florida, 1993.

[7] Salman Abdul Moiz, Supriya N.Pal, Jitendra Kumar3, Lavanya P, Deepak Chandra

Joshi, Venkataswamy G , “ Concurrency Control In Mobile Environments: Issues &

Challenges”, International Journal of Database Management Systems (IJDMS) Vol.3,

No.4, November 2011.

[8] Syed Abbas Bukhari , Samuel Rivera Aparicio , “A Survey of Current Priority

Assignment Policies (PAP) and Concurrency Control Protocols (CCP) in Real-Time

Database Systems RTBDS”. MS Bioinformatics, Sustainable and Resilient

Infrastructures Systems (CEE), 2012.

http://www.scientific.net/author/Jun_Chen_8
http://www.scientific.net/author/Yu_Fen_Wang
http://www.scientific.net/author/Jian_Ping_Wang_6

International Journal of Computer Science and Business Informatics

IJCSBI.ORG

ISSN: 1694-2108 | Vol. 4, No. 1. AUGUST 2013 15

[9] “Transaction and Concurrency Control”,CS 141b- Distributed Computation

Laboratory, http://www.cs.caltech.edu/~cs141/, February 19, 2004. “Transaction and

Concurrency Control”,CS 141b- Distributed Computation Laboratory,

http://www.cs.caltech.edu/~cs141/, February 19, 2004.

[10] Vishnu Swaroop, Gyanendra Kumar Gupta, Udai Shanker, “Issues In Mobile

Distributed Real Time Databases: Performance And Review” , India ,2011.

http://www.cs.caltech.edu/~cs141/
http://www.cs.caltech.edu/~cs141/

